
Volume 24

#TWTechRadar
thoughtworks.com/radar

TECHNOLOGY

An opinionated guide
to technology frontiers

RADAR

https://thght.works/3rteXex
https://thght.works/3riAVkA

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 2

The Technology Advisory Board (TAB) is a group of 20 senior technologists
at Thoughtworks. The TAB meets twice a year face-to-face and biweekly by
phone. Its primary role is to be an advisory group for Thoughtworks CTO,
Rebecca Parsons.

The TAB acts as a broad body that can look at topics that affect technology
and technologists at Thoughtworks. With the ongoing global pandemic, we
once again created this volume of the Technology Radar via a virtual event.

Contributors
The Technology Radar is prepared by the
Thoughtworks Technology Advisory Board

Cassie
Shum

Erik
Dörnenburg

Evan
Bottcher

Rebecca
Parsons (CTO)

Fausto
de la Torre

Camilla
Crispim

Martin Fowler
(Chief Scientist)

Hao
Xu

Lakshminarasimhan
Sudarshan

Perla
Villarreal

Rachel
Laycock

Bharani
Subramaniam

Ian
Cartwright

Birgitta
Böckeler

Scott
Shaw

James
Lewis

Mike
Mason

Shangqi
Liu

Neal
Ford

Brandon
Byars

Zhamak
Dehghani

https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/rebecca-parsons
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://www.thoughtworks.com/profiles/camilla-crispim
https://www.thoughtworks.com/profiles/martin-fowler
https://www.thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://www.thoughtworks.com/profiles/perla-villarreal
https://www.thoughtworks.com/profiles/rachel-laycock
https://www.thoughtworks.com/profiles/bharani-subramaniam
https://www.thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/birgitta-bockeler
https://www.thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/james-lewis
https://www.thoughtworks.com/profiles/mike-mason
https://www.thoughtworks.com/profiles/liu-shangqi
https://www.thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/zhamak-dehghani

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 3

About
the Radar
Thoughtworkers are passionate about
technology. We build it, research it, test it, open
source it, write about it and constantly aim to
improve it — for everyone. Our mission is to
champion software excellence and revolutionize
IT. We create and share the Thoughtworks
Technology Radar in support of that mission.
The Thoughtworks Technology Advisory
Board, a group of senior technology leaders at
Thoughtworks, creates the Radar. They meet
regularly to discuss the global technology
strategy for Thoughtworks and the technology
trends that significantly impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions in a
format that provides value to a wide range of
stakeholders, from developers to CTOs. The
content is intended as a concise summary.

We encourage you to explore these technologies.
The Radar is graphical in nature, grouping items
into techniques, tools, platforms and languages
& frameworks. When Radar items could appear
in multiple quadrants, we chose the one that
seemed most appropriate. We further group
these items in four rings to reflect our current
position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq.

https://thght.works/3cpD35M

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 4

Hold HoldAssess AssessTrial TrialAdopt Adopt

Our Radar is forward looking. To make
room for new items, we fade items that
haven’t moved recently, which isn’t a
reflection on their value but rather on
our limited Radar real estate.

Hold
Proceed with caution.

Assess
Worth exploring with the goal of
understanding how it will affect your enterprise.

Trial
Worth pursuing. It’s important to understand how
to build up this capability. Enterprises can try this
technology on a project that can handle the risk.

Adopt
We feel strongly that the industry should
be adopting these items. We use them
when appropriate in our projects.

New

Moved in/out

No changeRadar at
a glance
The Radar is all about tracking interesting
things, which we refer to as blips. We organize
the blips in the Radar using two categorizing
elements: quadrants and rings. The quadrants
represent different kinds of blips. The rings
indicate what stage in an adoption lifecycle we
think they should be in.

A blip is a technology or technique that
plays a role in software development. Blips
are things that are “in motion” — that is we
find their position in the Radar is changing
— usually indicating that we’re finding
increasing confidence in them as they move
through the rings.

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 5

Themes for this edition
Platform Teams Drive
Speed to Market

Increasingly, organizations are adopting a
platform team concept: set up a dedicated
group that creates and supports internal
platform capabilities — cloud native,
continuous delivery, modern observability,
AuthZ/N patterns, service mesh, and
so on — then use those capabilities to
accelerate application development, reduce
operational complexity and improve
time to market. This growing maturity
is welcome and we first featured this
technique in the Radar in 2017. But with
increasing maturity, we’re also discovering
antipatterns that organizations should
avoid. For example, “one platform to rule
them all” may not be optimal, “big platform
up front” may take years to deliver value
and “build it and they will come” might
end up as a wasted effort. Instead, using
a product-thinking approach can help
you clarify what each of your internal
platforms should provide, depending on
its customers. Companies that put their
platform teams behind a ticketing system
like an old-school operations silo find
the same disadvantages of misaligned
prioritization: slow feedback and response,
resource allocation contention and other
well-known problems caused by the
silo. We’ve also seen several new tools
and integration patterns for teams and
technologies emerge, allowing more
effective partitioning of both.

Consolidated Convenience
over Best in Class

As engineering practices that feature
automation, scale and other modern
goals become more commonplace with
development teams, we see corresponding
developer-facing tool integration on
many platforms, particularly in the cloud
space. For example, artifact repositories,
source control, CI/CD pipelines, wikis, and
similar tools were usually hand-picked by
development teams and stitched together
à la carte. Now, delivery platforms such
as Azure DevOps and ecosystems such
as GitHub have subsumed many of these
tool categories. While the level of maturity
varies across platform offerings, the appeal
of a “one-stop shop” for delivery tooling
is undeniable. Overall, it seems that the
trade-off lies with having consolidated tool
stacks offer greater developer convenience
and less churn, but the set of tools rarely
represents the best possible.

Perennially “Too
Complex to Blip”

In Radar nomenclature, the final status
after discussion for many complex topics
is “TCTB — too complex to blip”: items
that defy classification because they
offer a number of pros and cons, a high
amount of nuance as to the applicability
of the advice or tool or other reasons
that prevent us from summarizing our
opinions in a few sentences. Frequently,
these topics go on to articles, podcasts,
and other non-Radar destinations. Some
of our richest conversations center
on these topics: they’re important but
complex, preventing a single succinct
point of view. Numerous topics recur
meeting after meeting — and, critically,
with several of our client engagements
— that eventually fall to TCTB, including
monorepos, orchestration guidelines for
distributed architectures and branching
models, among others. For those who
wonder why these important topics don’t
make it into the Radar, it’s not for lack
of awareness or desire on our part. Like
many topics in software development,
too many trade-offs exist to allow clear,
unambiguous advice. We sometimes do
find smaller pieces of the larger topics that
we can offer advice on that do make it in
the Radar, but the larger topics remain
perpetually too nuanced and unsettled for
the Radar.

Discerning the Context for
Architectural Coupling

A topic that recurs virtually every meeting
(see “Perennially ‘Too Complex to Blip’”)
is the appropriate level of coupling
in software architecture between
microservices, components, API gateways,
integration hubs, frontends, and so on...
pretty much everywhere two pieces of
software might connect, architects and
developers struggle finding the correct
level of coupling — much common advice
encourages extreme decoupling, but
that makes building workflows difficult.
Coupling in architecture touches on many
important considerations: how things
are wired, understanding the inherent
semantic coupling within each problem
domain, how things call one another or
how transactionality works (sometimes
in combination with other tricky features
like scalability). Software can’t exist
without some level of coupling outside of
singular monolithic systems; arriving at
the right set of trade-offs to determine
the types and levels of coupling becomes
a critical skill with modern architectures.
We do see specific bad practices such as
generating code for client libraries and
good practices such as the judicious use
of the BFF patterns. However, general
advice in this realm is useless and silver
bullets don’t exist. Invest time and effort
in understanding the factors at play when
making these decisions on a case-by-case
basis rather than seeking a generic but
inadequate solution.

https://thoughtworks.com/radar/techniques/platform-engineering-product-teams
https://thoughtworks.com/radar/techniques/ticket-driven-platform-operating-models
https://teamtopologies.com/
https://thoughtworks.com/radar/platforms/azure-devops
https://thoughtworks.com/radar/tools/github
https://www.thoughtworks.com/insights/blog/zhong-tai-radical-approach-enterprise-it
https://www.thoughtworks.com/podcasts/sensible-approach-multi-cloud

Hold HoldAssess AssessTrial TrialAdopt Adopt

59

17

18

23

31

39

40

41

42

43

44

45

46

47

49

51

50

16

7 8

9

10
19

27

28

29

30

20

22

24

32

33

25 26

21

11

12 13

14

15
16

5

53

55

56

57

68
69 70 71

80

72
73

74

75

76

77

78

79

60

62
63

64

66

67

81

83

86

88 91

94

84

95

96 97

98
99

100

101

102

103

10434

35

36

37

82

85

87

89

90

92

93

2

3
4

38

48

52 65

61

58

54

Techniques
Adopt
1. API expand-contract
2. Continuous delivery for machine learning (CD4ML)
3. Design systems
4. Platform engineering product teams
5. Service account rotation approach

Trial
6. Cloud sandboxes
7. Contextual bandits
8. Distroless Docker images
9. Ethical Explorer
10. Hypothesis-driven legacy renovation
11. Lightweight approach to RFCs
12. Simplest possible ML
13. SPA injection
14. Team cognitive load
15. Tool-managed Xcodeproj
16. UI/BFF shared types

Assess
17. Bounded low-code platforms
18. Decentralized identity
19. Deployment drift radiator
20. Homomorphic encryption
21. Hotwire
22. Import maps for micro frontends
23. Open Application Model (OAM)
24. Privacy-focused web analytics
25. Remote mob programming
26. Secure multiparty computing

Hold
27. GitOps
28. Layered platform teams
29. Naive password complexity requirements
30. Peer review equals pull request
31. SAFe™
32. Separate code and pipeline ownership
33. Ticket-driven platform operating models

Platforms
Adopt

Trial
34. AWS Cloud Development Kit
35. Backstage
36. Delta Lake
37. Materialize
38. Snowflake
39. Variable fonts

Assess
40. Apache Pinot
41. Bit.dev
42. DataHub
43. Feature Store
44. JuiceFS
45. Kafka API without Kafka
46. NATS
47. Opstrace
48. Pulumi
49. Redpanda

Hold
50. Azure Machine Learning
51. Homemade infrastructure-as-code (IaC) products

Tools
Adopt
52. Sentry

Trial
53. axe-core
54. dbt
55. esbuild
56. Flipper
57. Great Expectations
58. k6
59. MLflow
60. OR-Tools
61. Playwright
62. Prowler
63. Pyright
64. Redash
65. Terratest
66. Tuple
67. Why Did You Render

Assess
68. Buildah and Podman
69. GitHub Actions
70. Graal Native Image
71. HashiCorp Boundary
72. imgcook
73. Longhorn
74. Operator Framework
75. Recommender
76. Remote - WSL
77. Spectral
78. Yelp detect-secrets
79. Zally

Hold
80. AWS CodePipeline

Languages &
Frameworks
Adopt
81. Combine
82. LeakCanary

Trial
83. Angular Testing Library
84. AWS Data Wrangler
85. Blazor
86. FastAPI
87. io-ts
88. Kotlin Flow
89. LitElement
90. Next.js
91. On-demand modules
92. Streamlit
93. SWR
94. TrustKit

Assess
95. .NET 5
96. bUnit
97. Dagster
98. Flutter for Web
99. Jotai and Zustand
100. Kotlin Multiplatform Mobile
101. LVGL
102. React Hook Form
103. River
104. Webpack 5 Module Federation

Hold

The Radar

New Moved in/out No change

Techniques
TECHNOLOGY RADAR

© Thoughtworks, Inc. All Rights Reserved.

8 | TECHNOLOGY RADAR

API expand-contract
Adopt

The API expand-contract pattern, sometimes
called parallel change, will be familiar to
many, especially when used with databases
or code; however, we only see low levels of
adoption with APIs. Specifically, we’re seeing
complex versioning schemes and breaking
changes used in scenarios where a simple
expand and then contract would suffice.
For example, first adding to an API while
deprecating an existing element, and then
only later removing the deprecated elements
once consumers are switched to the newer
schema. This approach does require
some coordination and visibility of the API
consumers, perhaps through a technique
such as consumer-driven contract testing.

Continuous delivery for
machine learning (CD4ML)
Adopt

We see continuous delivery for machine
learning (CD4ML) as a good default
starting point for any ML solution that is
being deployed into production. Many
organizations are becoming more reliant on
ML solutions for both customer offerings
and internal operations so it makes sound
business sense to apply the lessons and
good practice captured by continuous
delivery (CD) to ML solutions.

Design systems
Adopt

As application development becomes
increasingly dynamic and complex, it’s a

Adopt
1. API expand-contract
2. Continuous delivery for machine

learning (CD4ML)
3. Design systems
4. Platform engineering product

teams
5. Service account rotation approach

Trial
6. Cloud sandboxes
7. Contextual bandits
8. Distroless Docker images
9. Ethical Explorer
10. Hypothesis-driven legacy

renovation
11. Lightweight approach to RFCs
12. Simplest possible ML
13. SPA injection
14. Team cognitive load
15. Tool-managed Xcodeproj
16. UI/BFF shared types

Assess
17. Bounded low-code platforms
18. Decentralized identity
19. Deployment drift radiator
20. Homomorphic encryption
21. Hotwire
22. Import maps for micro frontends
23. Open Application Model (OAM)
24. Privacy-focused web analytics
25. Remote mob programming
26. Secure multiparty computing

Hold
27. GitOps
28. Layered platform teams
29. Naive password complexity

requirements
30. Peer review equals pull request
31. SAFe™
32. Separate code and pipeline

ownership
33. Ticket-driven platform operating

models

Techniques

challenge to deliver accessible and usable
products with consistent style. This is
particularly true in larger organizations
with multiple teams working on different
products. Design systems define a collection
of design patterns, component libraries
and good design and engineering practices
that ensure consistent digital products.
Built on the corporate style guides of the
past, design systems offer shared libraries
and documents that are easy to find and
use. Generally, guidance is written down as
code and kept under version control so that
the guide is less ambiguous and easier to
maintain than simple documents. Design
systems have become a standard approach
when working across teams and disciplines

in product development because they allow
teams to focus. They can address strategic
challenges around the product itself without
reinventing the wheel every time a new
visual component is needed.

Platform engineering
product teams
Adopt

As noted in one of the themes for this
edition, the industry is increasingly gaining
experience with platform engineering
product teams that create and support
internal platforms. These platforms are
used by teams across an organization

Hold HoldAssess AssessTrial TrialAdopt Adopt

59

17

18

23

31

39

40

41

42

43

44

45

46

47

49

51

50

16

7 8

9

10
19

27

28

29

30

20

22

24

32

33

25 26

21

11

12 13

14

15
16

5

53

55

56

57

68
69 70 71

80

72
73

74

75

76

77

78

79

60

62
63

64

66

67

81

83

86

88 91

94

84

95

96 97

98
99

100

101

102

103

10434

35

36

37

82

85

87

89

90

92

93

2

3
4

38

48

52 65

61

58

54

https://www.martinfowler.com/bliki/ParallelChange.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://thoughtworks.com/radar/techniques/continuous-delivery-cd
https://thoughtworks.com/radar/techniques/continuous-delivery-cd

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 9

two things: the security and the size
of the image. Traditionally, we’ve used
container security scanning tools to detect
and patch common vulnerabilities and
exposures and small distributions such as
Alpine Linux to address the image size and
distribution performance. But with rising
security threats, eliminating all possible
attack vectors is more important than ever.
That’s why distroless Docker images are
becoming the default choice for deployment
containers. Distroless Docker images
reduce the footprint and dependencies by
doing away with a full operating system
distribution. This technique reduces security
scan noise and the application attack
surface. Moreover, fewer vulnerabilities
need to be patched and as a bonus, these
smaller images are more efficient. Google
has published a set of distroless container
images for different languages. You can
create distroless application images using
the Google build tool Bazel or simply use
multistage Dockerfiles. Note that distroless
containers by default don’t have a shell for
debugging. However, you can easily find
debug versions of distroless containers
online, including a BusyBox shell. Distroless
Docker images is a technique pioneered by
Google and, in our experience, is still largely
confined to Google-generated images.
We would be more comfortable if there
were more than one provider to choose
from. Also, use caution when applying
Trivy or similar vulnerability scanners since
distroless containers are only supported in
more recent versions.

Ethical Explorer
Trial

The group behind Ethical OS — the
Omidyar Network, a self-described
social change venture created by eBay
founder Pierre Omidyar — has released
a new iteration called Ethical Explorer.
The new Ethical Explorer pack draws

and accelerate application development,
reduce operational complexity and improve
time to market. With increasing adoption
we’re also clearer on both good and bad
patterns for this approach. When creating a
platform, it’s critical to have clearly defined
customers and products that will benefit
from it rather than building in a vacuum. We
caution against layered platform teams that
simply preserve existing technology silos
but apply the “platform team” label as well
as against ticket-driven platform operating
models. We’re still big fans of using concepts
from Team Topologies as we think about
how best to organize platform teams. We
consider platform engineering product
teams to be a standard approach and a
significant enabler for high-performing IT.

Service account
rotation approach
Adopt

We strongly advise organizations to make
sure, when they really need to use cloud
service accounts, that they are rotating
the credentials. Rotation is one of the
three R’s of security. It is far too easy
for organizations to forget about these
accounts unless an incident occurs. This
is leading to accounts with unnecessarily
broad permissions remaining in use for long
periods alongside a lack of planning for how
to replace or rotate them. Regularly applying
a cloud service account rotation approach
also provides a chance to exercise the
principle of least privilege.

Cloud sandboxes
Trial

As the cloud is becoming more and more a
commodity and being able to spin up cloud
sandboxes is easier and available at scale,
our teams prefer cloud-only (as opposed to
local) development environments to reduce

maintenance complexity. We’re seeing that
the tooling to do local simulation of cloud-
native services limits the confidence in
developer build and test cycles; therefore,
we’re looking to focus on standardizing
cloud sandboxes over running cloud-native
components on a developer machine.
This will drive good infrastructure-as-code
practices as a forcing function and good
onboarding processes for provisioning
sandbox environments for developers. There
are risks associated with this transition,
as it assumes that developers will have an
absolute dependency on cloud environment
availability, and it may slow down the
developer feedback loop. We strongly
recommend you adopt some lean governance
practices regarding standardization of these
sandbox environments, especially with regard
to security, IAM and regional deployments.

Contextual bandits
Trial

Contextual bandits is a type of
reinforcement learning that is well suited
for problems with exploration/exploitation
trade-offs. Named after “bandits,” or
slot machines, in casinos, the algorithm
explores different options to learn more
about expected outcomes and balances it
by exploiting the options that perform well.
We’ve successfully used this technique in
scenarios where we’ve had little data to
train and deploy other machine-learning
models. The fact that we can add context
to this explore/exploit trade-off makes it
suitable for a wide variety of use cases
including A/B testing, recommendations
and layout optimizations.

Distroless Docker images
Trial

When building Docker images for our
applications, we’re often concerned with

Techniques

Named after “bandits,” or
slot machines, in casinos,
this algorithm explores
different options to learn
more about expected
outcomes and balances
by exploiting the options
that perform well.

(Contextual bandits)

https://thoughtworks.com/radar/techniques/container-security-scanning
https://cve.mitre.org/
https://cve.mitre.org/
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://bazel.build/
https://busybox.net/downloads/BusyBox.html
https://www.thoughtworks.com/radar/tools/trivy
https://thoughtworks.com/radar/techniques/ethical-os
https://ethicalexplorer.org/
https://thoughtworks.com/radar/techniques/layered-platform-teams
https://teamtopologies.com/
https://thoughtworks.com/radar/techniques/the-three-rs-of-security
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a
https://thoughtworks.com/radar/platforms/docker

© Thoughtworks, Inc. All Rights Reserved.

10 | TECHNOLOGY RADAR

on lessons learned from using Ethical
OS and adds further questions for
product teams to consider. The kit,
which can be downloaded for free and
folded into cards to trigger discussion,
has open-ended question prompts
for several technical “risk zones,”
including surveillance (“can someone
use our product or service to track or
identify other users?”), disinformation,
exclusion, algorithmic bias, addiction,
data control, bad actors and outsized
power. The included field guide has
activities and workshops, ideas for
starting conversations and tips for
gaining organizational buy-in. While we’ve
a long way to go as an industry to better
represent the ethical externalities of our
digital society, we’ve had some productive
conversations using Ethical Explorer,
and we’re encouraged by the broadening
awareness of the importance of product
decisions in addressing societal issues.

Hypothesis-driven
legacy renovation
Trial

We’re often asked to refresh, update or
remediate legacy systems that we didn’t
originally build. Sometimes, technical
issues need our attention such as
improving performance or reliability. One
common approach to address these issues
is to create “technical stories” using the
same format as a user story but with a
technical outcome rather than a business
one. But these technical tasks are often
difficult to estimate, take longer than
anticipated or don’t end up having the
desired outcome. An alternative, more
successful method is to apply hypothesis-
driven legacy renovation. Rather than
working toward a standard backlog, the
team takes ownership of a measurable
technical outcome and collectively
establishes a set of hypotheses about the

problem. They then conduct iterative, time-
boxed experiments to verify or disprove
each hypothesis in order of priority.
The resulting workflow is optimized for
reducing uncertainty rather than following
a plan toward a predictable outcome.

Lightweight approach to RFCs
Trial

As organizations drive toward evolutionary
architecture, it’s important to capture
decisions around design, architecture,
techniques and teams’ ways of workings.
The process of collecting and aggregating
feedback that will lead to these decisions
begin with Request for Comments
(RfCs). RfCs are a technique for collecting
context, design and architectural ideas
and collaborating with teams to ultimately
come to decisions along with their context
and consequences. We recommend that
organizations take a lightweight approach
to RFCs by using a simple standardized
template across many teams as well as
version control to capture RfCs.

It’s important to capture these in an audit
of these decisions to benefit future team
members and to capture the technical
and business evolution of an organization.
Mature organizations have used RfCs
in autonomous teams to drive better
communication and collaboration especially
in cross-team relevant decisions.

Simplest possible ML
Trial

All major cloud providers offer a dazzling
array of machine-learning (ML) solutions.
These powerful tools can provide a lot of
value, but come at a cost. There is the pure
run cost for these services charged by the
cloud provider. In addition, there is a kind of
operations tax. These complex tools need to

be understood and operated, and with each
new tool added to the architecture this tax
burden increases. In our experience, teams
often choose complex tools because they
underestimate the power of simpler tools
such as linear regression. Many ML problems
don’t require a GPU or neural networks. For
that reason we advocate for the simplest
possible ML, using simple tools and models
and a few hundred lines of Python on the
compute platform you have at hand. Only
reach for the complex tools when you can
demonstrate the need for them.

SPA injection
Trial

The strangler fig pattern is often the default
strategy for legacy modernization, where the
new code wraps around the old and slowly
absorbs the ability to handle all the needed
functionality. That sort of “outside-in”
approach works well for a number of legacy
systems, but now that we’ve had enough
experience with single-page applications
(SPA) for them to become legacy systems
themselves, we’re seeing the opposite
“inside-out” approach used to replace them.
Instead of wrapping the legacy system, we
instead embed the beginning of the new
SPA into the HTML document containing
the old one and let it slowly expand in
functionality. The SPA frameworks don’t
even need to be the same as long as users
can tolerate the performance hit of the
increased page size (e.g., embedding a new
React app inside an old AngularJS one). SPA
injection allows you to iteratively remove the
old SPA until the new one completely takes
over. Whereas a strangler fig can be viewed
as a type of parasite that uses the host tree’s
stable external surface to support itself until
it takes root and the host itself dies, this
approach is more like injecting an outside
agent into the host, relying on functionality
of the original SPA until it can completely
take over.

Techniques

When it comes to legacy
modernization in single-
page apps (SPAs), instead
of wrapping the legacy
system we instead embed
the beginning of the
new SPA into the HTML
document containing the
old one and let it slowly
expand in functionality.

(SPA Injection)

https://ethicalexplorer.org/download/
https://www.thoughtworks.com/radar/techniques/evolutionary-architecture
https://www.thoughtworks.com/radar/techniques/evolutionary-architecture
https://martinfowler.com/bliki/StranglerFigApplication.html
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/angularjs

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 11

Team cognitive load
Trial

A system’s architecture mimics
organizational structure and its
communication. It’s not big news that we
should be intentional about how teams
interact — see, for instance, the Inverse
Conway Maneuver. Team interaction is one
of the variables for how fast and how easily
teams can deliver value to their customers.
We were happy to find a way to measure
these interactions; we used the Team
Topologies author’s assessment which
gives you an understanding of how easy
or difficult the teams find it to build, test
and maintain their services. By measuring
team cognitive load, we could better advise
our clients on how to change their teams’
structure and evolve their interactions.

Tool-managed Xcodeproj
Trial

Many of our developers coding iOS in
Xcode often get headaches because the
Xcodeproj file changes with every project
change. The Xcodeproj file format is not
human-readable, hence trying to handle
merge conflicts is quite complicated and
can lead to productivity loss and risk
of messing up the entire project — if
anything goes wrong with the file, Xcode
won’t work properly and developers
will very likely be blocked. Instead of
trying to merge and fix the file manually
or version it, we recommend you use
a tool-managed Xcodeproj approach:
Define your Xcode project configuration
in YAML (XcodeGen, Struct), Ruby (Xcake)
or Swift (Tuist). These tools generate the
Xcodeproj file based on a configuration
file and the project structure. As a result,
merge conflicts in the Xcodeproj file will
be a thing of the past, and when they do
happen in the configuration file, they’re
much easier to handle.

UI/BFF shared types
Trial

With TypeScript becoming a common
language for front-end development
and Node.js becoming the preferred BFF
technology, we’re seeing increasing use
of UI/BFF shared types. In this technique,
a single set of type definitions is used to
define both the data objects returned by
front-end queries and the data served
to satisfy those queries by the back-
end server. Ordinarily, we would be
cautious about this practice because of
the unnecessarily tight coupling it creates
across process boundaries. However,
many teams are finding that the benefits
of this approach outweigh any risks of
tight coupling. Since the BFF pattern works
best when the same team owns both the
UI code and the BFF, often storing both
components in the same repository, the UI/
BFF pair can be viewed as a single cohesive
system. When the BFF offers strongly typed
queries, the results can be tailored to
the specific needs of the frontend rather
than reusing a single, general-purpose
entity that must serve the needs of many
consumers and contain more fields than
actually required. This reduces the risk
of accidentally exposing data that the
user shouldn’t see, prevents incorrect
interpretation of the returned data object
and makes the query more expressive.
This practice is particularly useful when
implemented with io-ts to enforce the run-
time type safety.

Bounded low-code platforms
Assess

One of the most nuanced decisions facing
companies at the moment is the adoption
of low-code or no-code platforms, that is,
platforms that solve very specific problems
in very limited domains. Many vendors
are pushing aggressively into this space.

The problems we see with these platforms
typically relate to an inability to apply good
engineering practices such as versioning.
Testing too is typically really hard. However,
we noticed some interesting new entrants
to the market — including Amazon
Honeycode, which makes it easy to create
simple task or event management apps,
and Parabola for IFTTT-like cloud workflows
— which is why we’re once again including.
bounded low-code platforms in this volume.
Nevertheless, we remain deeply skeptical
about their wider applicability since these
tools, like Japanese Knotweed, have a knack
of escaping their bounds and tangling
everything together. That’s why we still
strongly advise caution in their adoption.

Decentralized identity
Assess

In 2016, Christopher Allen, a key
contributor to SSL/TLS, inspired us
with an introduction of 10 principles
underpinning a new form of digital identity
and a path to get there, the path to self-
sovereign identity. Self-sovereign identity,
also known as decentralized identity,
is a “lifetime portable identity for any
person, organization, or thing that does
not depend on any centralized authority
and can never be taken away,” according
to the Trust over IP standard. Adopting
and implementing decentralized identity
is gaining momentum and becoming
attainable. We see its adoption in privacy-
respecting customer health applications,
government healthcare infrastructure
and corporate legal identity. If you want
to rapidly get started with decentralized
identity, you can assess Sovrin Network,
Hyperledger Aries and Indy OSS, as well
as decentralized identifiers and verifiable
credentials standards. We’re watching this
space closely as we help our clients with
their strategic positioning in the new era of
digital trust.

Techniques

Team interaction is one of
the variables that impacts
speed and the ease with
which teams deliver value
to their customers. The
Team Topologies author
developed an assessment
for measuring these
interactions which we call
team cognitive load.

(Team cognitive load)

https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://teamtopologies.com/book
https://teamtopologies.com/book
https://github.com/TeamTopologies/Team-Cognitive-Load-Assessment
https://github.com/yonaskolb/XcodeGen
https://github.com/lyptt/struct
https://github.com/igor-makarov/xcake
https://github.com/tuist/tuist
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/platforms/node-js
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://thoughtworks.com/radar/languages-and-frameworks/io-ts
https://www.honeycode.aws/
https://www.honeycode.aws/
https://parabola.io/
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://thoughtworks.com/radar/platforms/trust-over-ip-stack
https://www.civic.com/healthkey/
https://www.truu.id/
https://id-bulletin.com/2020/06/04/news-gleif-and-evernym-demo-organization-wallets-to-deliver-trust-and-transparency-in-digital-business/
https://sovrin.org/
https://github.com/hyperledger/aries
https://github.com/hyperledger/indy-node
https://www.w3.org/TR/did-core/
https://thoughtworks.com/radar/techniques/verifiable-credentials
https://thoughtworks.com/radar/techniques/verifiable-credentials

© Thoughtworks, Inc. All Rights Reserved.

12 | TECHNOLOGY RADAR

Deployment drift radiator
Assess

A deployment drift radiator makes version
drift visible for deployed software across
multiple environments. Organizations
using automated deployments may require
manual approvals for environments that
get closer to production, meaning the
code in these environments might well be
lagging several versions behind current
development. This technique makes this lag
visible via a simple dashboard showing how
far behind each deployed component is for
each environment. This helps to highlight
the opportunity cost of completed software
not yet in production while drawing
attention to related risks such as security
fixes not yet deployed.

Homomorphic encryption
Assess

Fully homomorphic encryption (HE)
refers to a class of encryption methods
that allow computations (such as search
and arithmetic) to be performed directly
on encrypted data. The result of such a
computation remains in encrypted form,
which at a later point can be decrypted and
revealed. Although the HE problem was
first proposed in 1978, a solution wasn’t
constructed until 2009. With advances
in computing power and the availability
of easy-to-use open-source libraries —
including SEAL, Lattigo, HElib and partially
homomorphic encryption in Python —
HE is becoming feasible in real-world
applications. The motivating scenarios
include privacy-preserving use cases,
where computation can be outsourced
to an untrusted party, for example,
running computation on encrypted data
in the cloud, or enabling a third party to
aggregate homomorphically encrypted

intermediate federated machine learning
results. Moreover, most HE schemes are
considered to be secure against quantum
computers, and efforts are underway
to standardize HE. Despite its current
limitations, namely performance and
feasibility of the types of computations, HE
is worth your attention.

Hotwire
Assess

Hotwire (HTML over the wire) is a technique
to build web applications. Pages are
constructed out of components, but unlike
modern SPAs the HTML for the components
is generated on the server side and then
sent “over the wire” to the browser. The
application has only a small amount of
JavaScript code in the browser to stitch the
HTML fragments together. Our teams, and
doubtlessly others too, experimented with
this technique after asynchronous web
requests gained cross-browser support
around 2005, but for various reasons it never
gained much traction.

Today, Hotwire uses modern web browser
and HTTP capabilities to achieve the speed,
responsiveness and dynamic nature of
single-page apps (SPAs). It embraces simpler
web application design by localizing the logic
to the server and keeping the client-side code
simple. The team at Basecamp has released
a few Hotwire frameworks that power
their own application, including Turbo and
Stimulus. Turbo includes a set of techniques
and frameworks to speed up the application
responsiveness by preventing whole page
reloading, page preview from cache and
decomposing the page into fragments with
progressive enhancements on request.
Stimulus is designed to enhance static HTML
in the browser by connecting JavaScript
objects to the page elements on the HTML.

Import maps for
micro frontends
Assess

When composing an application out of
several micro frontends, some part of
the system needs to decide which micro
frontends to load and where to load
them from. So far, we’ve either built
custom solutions or relied on a broader
framework like single-spa. Now there
is a new standard, import maps, that
helps in both cases. Our first experiences
show that using import maps for micro
frontends allows for a neat separation
of concerns. The JavaScript code states
what to import and a small script tag in
the initial HTML response specifies where
to load the frontends from. That HTML
is obviously generated on the server
side, which makes it possible to use
some dynamic configuration during its
rendering. In many ways this technique
reminds us of linker/loader paths for
dynamic Unix libraries. At the moment
import maps are only supported by
Chrome, but with the SystemJS polyfill
they’re ready for wider use.

Open Application Model (OAM)
Assess

The Open Application Model (OAM) is an
attempt to bring some standardization
to the space of shaping infrastructure
platforms as products. Using the
abstractions of components, application
configurations, scopes and traits,
developers can describe their applications
in a platform-agnostic way, while platform
implementers define their platform in
terms of workload, trait and scope. Since
we last talked about the OAM, we’ve
followed one of its first implementations
with interest, KubeVela. KubeVela is close

Techniques

Organizations using
automated deployments
sometimes require
manual approvals for
environments that get
closer to production,
leading the code in
these environments
to lag behind current
development. A
deployment drift radiator
makes this lag visible via a
simple dashboard.

(Deployment drift radiator)

https://en.wikipedia.org/wiki/Homomorphic_encryption
https://github.com/microsoft/SEAL#introduction
https://github.com/ldsec/lattigo
https://github.com/homenc/HElib
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://en.wikipedia.org/wiki/Federated_learning
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://homomorphicencryption.org/standard/
https://hotwire.dev/
https://hey.com/
https://turbo.hotwire.dev/
https://stimulus.hotwire.dev/
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/languages-and-frameworks/single-spa
https://github.com/WICG/import-maps
https://github.com/systemjs/systemjs
https://oam.dev/
https://kubevela.io/

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 13

to release 1.0, and we’re curious to see if
implementations like this can substantiate
the promise of the OAM idea.

Privacy-focused web analytics
Assess

Privacy-focused web analytics is a technique
for gathering web analytics without
compromising end user privacy by keeping
the end users truly anonymous. One
surprising consequence of General Data
Protection Regulation (GDPR) compliance is
the decision taken by many organizations to
degrade the user experience with complex
cookie consent processes, especially when
the user doesn’t immediately consent to the
“all the cookies” default settings. Privacy-
focused web analytics has the dual benefit of
both observing the spirit and letter of GDPR
while also avoiding the need to introduce
intrusive cookie consent forms. One
implementation of this approach is Plausible.

Remote mob programming
Assess

Mob programming is one of those
techniques that our teams have found to
be easier when done remotely. Remote
mob programming is allowing teams to
quickly “mob” around an issue or piece
of code without the physical constraints
of only being able to fit so many people
around a pairing station. Teams can quickly
collaborate on an issue or piece of code
without having to connect to a big display,
book a physical meeting room or find a
whiteboard.

Secure multiparty computing
Assess

Secure multiparty computing (MPC) solves
the problem of collaborative computing

that protects privacy between parties
that do not trust each other. It’s aim is to
safely calculate an agreed-upon problem
without a trusted third party, while each
participant is required to partake in the
calculation result and can’t be obtained
by other entities. A simple illustration
for MPC is the millionaires’ problem: two
millionaires want to understand who is
the richest, but neither want to share
their actual net worth with each other nor
trust a third party. The implementation
approaches of MPC vary; scenarios
may include secret sharing, oblivious
transfer, garbled circuits or homomorphic
encryption. Some commercial MPC
solutions that have recently appeared
(e.g., Antchain Morse) claim to help solve
the problems of secret sharing and secure
machine learning in scenarios such as
multiparty joint credit investigation and
medical records data exchange. Although
these platforms are attractive from a
marketing perspective, we’ve yet to see
whether they’re really useful.

GitOps
Hold

We suggest approaching GitOps with a
degree of care, especially with regard to
branching strategies. GitOps can be seen
as a way of implementing infrastructure
as code that involves continuously
synchronizing and applying infrastructure
code from Git into various environments.
When used with a “branch per environment”
infrastructure, changes are promoted from
one environment to the next by merging
code. While treating code as the single
source of truth is clearly a sound approach,
we’re seeing branch per environment
lead to environmental drift and eventually
environment-specific configs as code merges
become problematic or even stop entirely.
This is very similar to what we’ve seen in the
past with long-lived branches with GitFlow.

Layered platform teams
Hold

The explosion of interest around software
platforms has created a lot of value for
organizations, but the path to building a
platform-based delivery model is fraught
with potential dead ends. It’s common in
the excitement of new paradigms to see a
resurgence of older techniques rebranded
with the new vernacular, making it easy to
lose sight of the reasons we moved past
those techniques in the first place. For an
example of this rebranding, see our blip on
traditional ESBs make a comeback as API
gateways in the previous Radar. Another
example we’re seeing is rehashing the
approach of dividing teams by technology
layer but calling them platforms. In the
context of building an application, it used
to be common to have a front-end team
separate from the business logic team
separate from the data team, and we see
analogs to that model when organizations
segregate platform capabilities among teams
dedicated to a business or data layer. Thanks
to Conway’s Law, we know that organizing
platform capability teams around business
capabilities is a more effective model, giving
the team end-to-end ownership of the
capability, including data ownership. This
helps to avoid the dependency management
headaches of layered platform teams, with
the front-end team waiting on the business
logic team waiting on the data team to get
anything done.

Naive password complexity
requirements
Hold

Password policies are a standard default
for many organizations today. However,
we’re still seeing organizations requiring
passwords to include a variety of symbols,
numbers, uppercase and lowercase letters
as well as inclusion of special characters.

Techniques

Secure multiparty
computing solves the
problem of collaborative
computing that protects
privacy between parties
that do not trust each
other without involving a
third party.

(Secure multiparty
computing)

https://plausible.io/
https://en.wikipedia.org/wiki/Secure_multi-party_computation
https://en.wikipedia.org/wiki/Yao%27s_Millionaires%27_problem
https://thoughtworks.com/radar/techniques/homomorphic-encryption
https://thoughtworks.com/radar/techniques/homomorphic-encryption
https://www.antchain.net/solutions/morse
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/git
https://thoughtworks.com/radar/techniques/long-lived-branches-with-gitflow
https://thoughtworks.com/radar/techniques/esbs-in-api-gateway-s-clothing
https://thoughtworks.com/radar/techniques/esbs-in-api-gateway-s-clothing
https://www.thoughtworks.com/insights/articles/demystifying-conways-law
https://martinfowler.com/articles/microservices.html#OrganizedAroundBusinessCapabilities
https://martinfowler.com/articles/microservices.html#OrganizedAroundBusinessCapabilities

© Thoughtworks, Inc. All Rights Reserved.

14 | TECHNOLOGY RADAR

These are naive password complexity
requirements that lead to a false sense of
security as users will opt for more insecure
passwords because the alternative is
difficult to remember and type. According
to NIST recommendations, the primary
factor in password strength is password
length, and therefore users should choose
long passphrases with a maximum
requirement of 64 characters (including
spaces). These passphrases are more
secure and memorable.

Peer review equals pull request
Hold

Some organizations seem to think peer
review equals pull request; they’ve taken
the view that the only way to achieve a peer
review of code is via a pull request. We’ve
seen this approach create significant team
bottlenecks as well as significantly degrade
the quality of feedback as overloaded
reviewers begin to simply reject requests.
Although the argument could be made that
this is one way to demonstrate code review
“regulatory compliance” one of our clients
was told this was invalid since there was
no evidence the code was actually read by
anyone prior to acceptance. Pull requests
are only one way to manage the code review
workflow; we urge people to consider other
approaches, especially where there is a need
to coach and pass on feedback carefully.

SAFe™
Hold

Our positioning regarding “being agile
before doing agile” and our opinions
around this topic shouldn’t come as a
surprise; but since SAFe™ (Scaled Agile

Framework®), per Gartner’s May 2019
report, is the most considered and most
used enterprise agile framework, and since
we’re seeing more and more enterprises
going through organizational changes, we
thought it was time to raise awareness
on this topic again. We’ve come across
organizations struggling with SAFe’s over-
standardized, phase-gated processes.
Those processes create friction in the
organizational structure and its operating
model. It can also promote silos in the
organization, preventing platforms from
becoming real business capabilities
enablers. The top-down control generates
waste in the value stream and discourages
engineering talent creativity, while limiting
autonomy and experimentation in the
teams. Rather than measuring effort and
focusing on standardized ceremonies,
we recommend a leaner, value-driven
approach and governance to help eliminate
organizational friction such as EDGE, as
well as a team cognitive load assessment to
identify types of teams and determine how
they should better interact with each other.

Scaled Agile Framework® and SAFe™ are
trademarks of Scaled Agile, Inc.

Separate code and
pipeline ownership
Hold

Ideally, but especially when teams are
practicing DevOps, the deployment pipeline
and the code being deployed should be
owned by the same team. Unfortunately, we
still see organizations where there is separate
code and pipeline ownership, with the
deployment pipeline configuration owned
by the infrastructure team; this results in
delays to changes, barriers to improvements

and a lack of development team ownership
and involvement in deployments. One
cause of this can clearly be the separate
team, another can be the desire to retain
“gatekeeper” processes and roles. Although
there can be legitimate reasons for using this
approach (e.g., regulatory control), in general
we find it painful and unhelpful.

Ticket-driven platform
operating models
Hold

One of the ultimate goals of a platform
should be to reduce ticket-based processes
to an absolute minimum, as they create
queues in the value stream. Sadly,
we still see organizations not pushing
forcefully enough toward this important
goal, resulting in a ticket-driven platform
operating model. This is particularly
frustrating when ticket-based processes
are put in front of platforms that are built
on top of the self-service and API-driven
features of public cloud vendors. It’s hard
and not necessary to achieve self-service
with very few tickets right from the start,
but it needs to be the destination.

Over-reliance on bureaucracy and lack
of trust are among the causes of this
reluctance to move away from ticket-based
processes. Baking more automated checks
and alerts into your platform is one way to
help cut the cord from approval processes
with tickets. For example, provide teams
with visibility into their run costs and put in
automated guardrails to avoid accidental
explosion of costs. Implement security
policy as code and use configuration
scanners or analyzers like Recommender to
help teams do the right thing.

Techniques

Some organizations
seem to think peer review
equals pull request.
We’ve seen this approach
create significant team
bottlenecks as well as
significantly degrade the
quality of feedback.

(Peer review equals pull
request)

https://pages.nist.gov/800-63-3/sp800-63b.html
http://www.scaledagileframework.com/
http://go.scaledagile.com/Gartner-a.html
https://www.thoughtworks.com/books/edge
https://thoughtworks.com/radar/techniques/team-cognitive-load
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://thoughtworks.com/radar/tools/recommender

Platforms
TECHNOLOGY RADAR

© Thoughtworks, Inc. All Rights Reserved.

16 | TECHNOLOGY RADAR

AWS Cloud Development Kit
Trial

Many of our teams who are already on
AWS have found AWS Cloud Development
Kit (AWS CDK) to be a sensible AWS default
for enabling infrastructure provisioning.
In particular, they like the use of first-
class programming languages instead of
configuration files which allows them to use
existing tools, test approaches and skills. Like
similar tools, care is still needed to ensure
deployments remain easy to understand
and maintain. The development kit currently
supports TypeScript, JavaScript, Python, Java,
C# and .NET. New providers are being added
to the CDK core. We’ve also used both AWS
Cloud Development Kit and HashiCorp’s
Cloud Development Kit for Terraform to
generate Terraform configurations and
enable provisioning with the Terraform
platform with success.

Backstage
Trial

We continue to see interest in and use of
Backstage grow, alongside the adoption
of developer portals, as organizations
look to support and streamline their
development environments. As the number
of tools and technologies increases, some
form of standardization is becoming
increasingly important for consistency
so that developers are able to focus on
innovation and product development
instead of getting bogged down with
reinventing the wheel. Backstage is an
open-source developer portal platform
created by Spotify, it’s based upon software
templates, unifying infrastructure tooling

and consistent and centralized technical
documentation. The plugin architecture
allows for extensibility and adaptability into
an organization’s infrastructure ecosystem.

Delta Lake
Trial

Delta Lake is an open-source storage
layer, implemented by Databricks, that
attempts to bring ACID transactions to
big data processing. In our Databricks-
enabled data lake or data mesh projects,
our teams continue to prefer using Delta

Platforms Adopt

Trial
34. AWS Cloud

Development Kit
35. Backstage
36. Delta Lake
37. Materialize
38. Snowflake
39. Variable fonts

Assess
40. Apache Pinot
41. Bit.dev
42. DataHub
43. Feature Store
44. JuiceFS
45. Kafka API without Kafka
46. NATS
47. Opstrace
48. Pulumi
49. Redpanda

Hold
50. Azure Machine Learning
51. Homemade

infrastructure-as-code
(IaC) products

Lake storage over the direct use of file
storage types such S3 or ADLS. Of course
this is limited to projects that use storage
platforms that support Delta Lake when
using Parquet file formats. Delta Lake
facilitates concurrent data read/write use
cases where file-level transactionality is
required. We find Delta Lake’s seamless
integration with Apache Spark batch
and micro-batch APIs greatly helpful,
particularly features such as time travel —
accessing data at a particular point in time
or commit reversion — as well as schema
evolution support on write; though there
are some limitations on these features.

Hold HoldAssess AssessTrial TrialAdopt Adopt

59

17

18

23

31

39

40

41

42

43

44

45

46

47

49

51

50

16

7 8

9

10
19

27

28

29

30

20

22

24

32

33

25 26

21

11

12 13

14

15
16

5

53

55

56

57

68
69 70 71

80

72
73

74

75

76

77

78

79

60

62
63

64

66

67

81

83

86

88 91

94

84

95

96 97

98
99

100

101

102

103

10434

35

36

37

82

85

87

89

90

92

93

2

3
4

38

48

52 65

61

58

54

https://docs.aws.amazon.com/cdk/latest/guide/home.html
https://docs.aws.amazon.com/cdk/latest/guide/home.html
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://learn.hashicorp.com/tutorials/terraform/cdktf
https://backstage.io/
https://delta.io/
https://github.com/delta-io/delta
https://github.com/delta-io/delta
https://thoughtworks.com/radar/techniques/data-lake
https://thoughtworks.com/radar/techniques/data-mesh
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-au/services/storage/data-lake-storage/
https://docs.delta.io/latest/delta-storage.html
https://parquet.apache.org/
https://docs.databricks.com/delta/delta-batch.html
https://docs.databricks.com/delta/delta-streaming.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 17

Materialize
Trial

Materialize is a streaming database that
enables you to do incremental computation
without complicated data pipelines. Just
describe your computations via standard
SQL views and connect Materialize to the
data stream. The underlying differential
data flow engine performs incremental
computation to provide consistent and
correct output with minimal latency.
Unlike traditional databases, there are no
restrictions in defining these materialized
views, and the computations are executed in
real time. We’ve used Materialize, together
with Spring Cloud Stream and Kafka, to
query over streams of events for insights in
a distributed event-driven system, and we
quite like the setup.

Snowflake
Trial

Since we last mentioned Snowflake in
the Radar, we’ve gained more experience
with it as well as with data mesh as an
alternative to data warehouses and lakes.
Snowflake continues to impress with
features like time travel, zero-copy cloning,
data sharing and its marketplace. We also
haven’t found anything we don’t like about
it, all of which has led to our consultants
generally preferring it over the alternatives.
Redshift is moving toward storage and
compute separation, which has been a
strong point of Snowflake, but even with
Redshift Spectrum it isn’t as convenient and
flexible to use, partly because it is bound
by its Postgres heritage (we do still like
Postgres, by the way). Federated queries
can be a reason to go with Redshift. When
it comes to operations, Snowflake is much
simpler to run. BigQuery, which is another
alternative, is very easy to operate, but in

a multicloud setup Snowflake is a better
choice. We can also report that we’ve used
Snowflake successfully with GCP, AWS,
and Azure.

Variable fonts
Trial

Variable fonts are a way of avoiding the
need to find and include separate font
files for different weights and styles.
Everything is in one font file, and you can
use properties to select which style and
weight you need. While not new, we still
see sites and projects that could benefit
from this simple approach. If you have
pages that are including many variations
of the same font, we suggest trying out
variable fonts.

Apache Pinot
Assess

Apache Pinot is a distributed OLAP data
store, built to deliver real-time analytics
with low latency. It can ingest from batch
data sources (such as Hadoop HDFS,
Amazon S3, Azure ADLS or Google Cloud
Storage) as well as stream data sources
(such as Apache Kafka). If the need is
user-facing, low-latency analytics, SQL-
on-Hadoop solutions don’t offer the low
latency that is needed. Modern OLAP
engines like Apache Pinot (or Apache
Druid and Clickhouse among others)
can achieve much lower latency and are
particularly suited in contexts where
fast analytics, such as aggregations, are
needed on immutable data, possibly,
with real-time data ingestion. Originally
built by LinkedIn, Apache Pinot entered
Apache incubation in late 2018 and has
since added a plugin architecture and SQL
support among other key capabilities.

Apache Pinot can be fairly complex to
operate and has many moving parts, but
if your data volumes are large enough and
you need low-latency query capability, we
recommend you assess Apache Pinot.

Bit.dev
Assess

Bit.dev is a cloud-hosted collaborative
platform for UI components extracted,
modularized and reused with Bit. Web
components have been around for a while,
but building a modern front-end application
by assembling small, independent
components extracted from other projects
has never been easy. Bit was designed to
let you do exactly that: extract a component
from an existing library or project. You can
either build your own service on top of Bit
for component collaboration or use Bit.dev.

DataHub
Assess

Since we first mentioned data discoverability
in the Radar, LinkedIn has evolved
WhereHows to DataHub, the next
generation platform that addresses data
discoverability via an extensible metadata
system. Instead of crawling and pulling
metadata, DataHub adopts a push-based
model where individual components of the
data ecosystem publish metadata via an
API or a stream to the central platform. This
push-based integration shifts the ownership
from the central entity to individual
teams making them accountable for their
metadata. As more and more companies
are trying to become data driven, having a
system that helps with data discovery and
understanding data quality and lineage
is critical, and we recommend you assess
DataHub in that capacity.

Platforms

LinkedIn has evolved
WhereHows to DataHub,
the next-generation
platform that addresses
data discoverability
via an extensible
metadata system.

(DataHub)

https://materialize.io/
https://www.snowflake.com/
https://thoughtworks.com/radar/techniques/data-mesh
https://thoughtworks.com/radar/platforms/postgresql-for-nosql
https://thoughtworks.com/radar/platforms/bigquery
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure
https://pinot.apache.org/
https://druid.apache.org/
https://druid.apache.org/
https://clickhouse.tech/
https://bit.dev/
https://github.com/teambit/bit
https://thoughtworks.com/radar/platforms/web-components-standard
https://thoughtworks.com/radar/platforms/web-components-standard
https://thoughtworks.com/radar/techniques/data-discoverability
https://engineering.linkedin.com/blog/2016/03/open-sourcing-wherehows--a-data-discovery-and-lineage-portal
https://github.com/linkedin/datahub

© Thoughtworks, Inc. All Rights Reserved.

18 | TECHNOLOGY RADAR

Feature Store
Assess

Feature Store is an ML-specific data platform
that addresses some of the key challenges
we face today in feature engineering with
three fundamental capabilities: (1) it uses
managed data pipelines to remove struggles
with pipelines as new data arrives; (2)
catalogs and stores feature data to promote
discoverability and collaboration of features
across models; and (3) consistently serves
feature data during training and interference.

Since Uber revealed their Michelangelo
platform, many organizations and startups
have built their own versions of a feature
store; examples include Hopsworks, Feast
and Tecton. We see potential in Feature
Store and recommend you carefully
assess it.

JuiceFS
Assess

JuiceFS is an open-source, distributed
POSIX file system built on top of Redis
and an object store service (for example,
Amazon S3). If you’re building new
applications, then our recommendation
has always been to interact directly with
the object store without going through
another abstraction layer. However, JuiceFS
can be an option if you’re migrating legacy
applications that depend on traditional
POSIX file systems to the cloud.

Kafka API without Kafka
Assess

As more businesses turn to events as a
way to share data among microservices,
collect analytics or feed data lakes, Apache
Kafka has become a favorite platform
to support an event-driven architectural
style. Although Kafka was a revolutionary

concept in scalable persistent messaging,
a lot of moving parts are required to make
it work, including ZooKeeper, brokers,
partitions, and mirrors. While these can
be particularly tricky to implement and
operate, they do offer great flexibility
and power when needed, especially at
an industrial enterprise scale. Because
of the high barrier to entry presented by
the full Kafka ecosystem, we welcome the
recent explosion of platforms offering the
Kafka API without Kafka. Recent entries
such as Kafka on Pulsar and Redpanda
offer alternative architectures, and Azure
Event Hubs for Kafka provides some
compatibility with Kafka producer and
consumer APIs. Some features of Kafka,
like the streams client library, are not
compatible with these alternative brokers,
so there are still reasons to choose Kafka
over alternative brokers. It remains to
be seen, however, if developers actually
adopt this strategy or if it is merely an
attempt by competitors to lure users
away from the Kafka platform. Ultimately,
perhaps Kafka’s most enduring impact
could be the convenient protocol and API
provided to clients.

NATS
Assess

NATS is a fast, secure message queueing
system with an unusually wide range of
features and potential deployment targets.
At first glance, you would be forgiven
for asking why the world needs another
message queueing system. Message queues
have been around in various forms for
nearly as long as businesses have been
using computers and have undergone years
of refinement and optimization for various
tasks. But NATS has several interesting
characteristics and is unique in its ability
to scale from embedded controllers to
global, cloud-hosted superclusters. We’re
particularly intrigued by NATS’s intent to

support a continuous streaming flow of
data from mobile devices and IoT and
through a network of interconnected
systems. However, some tricky issues
need to be addressed, not the least of
which is ensuring consumers see only
the messages and topics to which they’re
allowed access, especially when the network
spans organizational boundaries. NATS 2.0
introduced a security and access control
framework that supports multitenant
clusters where accounts restrict a user’s
access to queues and topics. Written in
Go, NATS has primarily been embraced
by the Go language community. Although
clients exist for pretty much all widely used
programming languages, the Go client is
by far the most popular. However, some
of our developers have found that all the
language client libraries tend to reflect
the Go origins of codebase. Increasing
bandwidth and processing power on small,
wireless devices means that the volume of
data businesses must consume in real time
will only increase. Assess NATS as a possible
platform for streaming that data within and
among businesses.

Opstrace
Assess

Opstrace is an open-source observability
platform intended to be deployed in
the user’s own network. If we don’t use
commercial solutions like Datadog (for
example, because of cost or data residency
concerns), the only solution is to build
your own platform composed of open-
source tools. This can take a lot of effort
— Opstrace is intended to fill this gap. It
uses open-source APIs and interfaces such
as Prometheus and Grafana and adds
additional features on top like TLS and
authentication. At the heart of Opstrace
runs a Cortex cluster to provide the scalable
Prometheus API as well as a Loki cluster
for the logs. It’s fairly new and still misses

Platforms

As more businesses
turn to events as a way
to share data among
microservices, collect
analytics or feed data
lakes, Apache Kafka
has become a favorite
platform. Because of
the high barrier to
entry presented by the
full Kafka ecosystem,
we welcome the recent
explosion of platforms
offering the Kafka API
without Kafka.

(Kafka API without Kafka)

https://www.featurestore.org/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://github.com/logicalclocks/hopsworks
https://github.com/feast-dev/feast
https://www.tecton.ai/
https://github.com/juicedata/juicefs
https://www.thoughtworks.com/radar/platforms/redis
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/tools/apache-kafka
https://github.com/streamnative/kop
https://thoughtworks.com/radar/platforms/redpanda
https://github.com/Azure/azure-event-hubs-for-kafka
https://github.com/Azure/azure-event-hubs-for-kafka
https://nats.io/about/
https://opstrace.com/
https://thoughtworks.com/radar/tools/prometheus
https://thoughtworks.com/radar/tools/grafana
https://github.com/cortexproject/cortex
https://github.com/grafana/loki
https://opstrace.com/docs/references/roadmap#opstrace-roadmap

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 19

features when compared to solutions like
Datadog or SignalFX. Still, it’s a promising
addition to this space and worth keeping
an eye on.

Pulumi
Assess

We’ve seen interest in Pulumi slowly
but steadily rising. Pulumi fills a gaping
hole in the infrastructure coding world
where Terraform maintains a firm hold.
While Terraform is a tried-and-true
standby, its declarative nature suffers
from inadequate abstraction facilities and
limited testability. Terraform is adequate
when the infrastructure is entirely static,
but dynamic infrastructure definitions
call for a real programming language.
Pulumi distinguishes itself by allowing
configurations to be written in TypeScript/
JavaScript, Python and Go — no markup
language or templating required. Pulumi is
tightly focused on cloud-native architectures
— including containers, serverless functions
and data services — and provides good
support for Kubernetes. Recently, AWS
CDK has mounted a challenge, but Pulumi
remains the only cloud-neutral tool in
this area. We’re anticipating wider Pulumi
adoption in the future and looking forward
to a viable tool and knowledge ecosystem
emerging to support it.

Redpanda
Assess

Redpanda is a streaming platform that
provides a Kafka-compatible API, allowing it
to benefit from the Kafka ecosystem without

having to deal with the complexities of a
Kafka installation. For example, Redpanda
simplifies operations by shipping as a single
binary and avoiding the need for an external
dependency such as ZooKeeper. Instead, it
implements the Raft protocol and performs
comprehensive tests to validate it’s been
implemented correctly. One of Redpanda’s
capabilities (available for enterprise
customers only) is inline WebAssembly
(WASM) transformations, using an
embedded WASM engine. This allows
developers to create event transformers in
their language of choice and compile it to
WASM. Redpanda also offers much reduced
tail latencies and increased throughput due
to a series of optimizations. Redpanda is an
exciting alternative to Kafka and is
worth assessing.

Azure Machine Learning
Hold

We’ve observed before that the cloud
providers push more and more services
onto the market. We’ve also documented
our concerns that sometimes the services
are made available when they’re not quite
ready for prime time. Unfortunately, in our
experience, Azure Machine Learning falls
into the latter category. One of several
recent entrants in the field of bounded
low-code platforms, Azure ML promises
more convenience for data scientists.
Ultimately, however, it doesn’t live up to its
promise; in fact, it still feels easier for our
data scientists to work in Python. Despite
significant efforts, we struggled to make it
scale and lack of adequate documentation
proved to be another issue which is why we
moved it to the Hold ring.

Homemade infrastructure-as-
code (IaC) products
Hold

Products supported by companies or
communities are in constant evolution,
at least the ones that get traction in the
industry. Sometimes organizations tend to
build frameworks or abstractions on top of
the existing external products to cover very
specific needs, thinking that the adaptation
will provide more benefits than the existing
ones. We’re seeing organizations trying to
create homemade infrastructure-as-code
(IaC) products on top of the existing ones;
they underestimate the required effort to
keep those solutions evolving according
to their needs, and after a short period of
time, they realize that the original version
is in much better shape than their own;
there are even cases where the abstraction
on top of the external product reduces the
original capabilities. Although we’ve seen
success stories of organizations building
homemade solutions, we want to caution
about this approach as the effort required
to do so isn’t negligible, and a long-term
product vision is required to have the
expected outcomes.

Platforms

Sometimes organizations
build frameworks or
abstractions on top
of existing external
products to cover very
specific needs, thinking
that the adaptation
will provide them more
benefits. However, they
underestimate the
required effort to keep
those solutions evolving
according to their needs,
and soon realize that the
original version is in
much better shape
than their own.

(Homemade infrastructure-as-
code (IaC) products)

https://opstrace.com/docs/references/roadmap#opstrace-roadmap
https://pulumi.io/
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://thoughtworks.com/radar/languages-and-frameworks/go-language
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://github.com/vectorizedio/redpanda
https://thoughtworks.com/radar/tools/apache-kafka
https://vectorized.io/blog/validating-consistency/
https://thoughtworks.com/radar/languages-and-frameworks/webassembly
https://thoughtworks.com/radar/languages-and-frameworks/webassembly
https://vectorized.io/blog/tpc-buffers/
https://azure.microsoft.com/en-us/services/machine-learning/
https://towardsdatascience.com/top-8-no-code-machine-learning-platforms-you-should-use-in-2020-1d1801300dd0
https://thoughtworks.com/radar/techniques/bounded-low-code-platforms
https://thoughtworks.com/radar/techniques/bounded-low-code-platforms

Tools
TECHNOLOGY RADAR

© Thoughtworks, Inc. All Rights Reserved.

21 | TECHNOLOGY RADAR

Tools Adopt
52. Sentry

Trial
53. axe-core
54. dbt
55. esbuild
56. Flipper
57. Great Expectations
58. k6
59. MLflow
60. OR-Tools
61. Playwright
62. Prowler
63. Pyright
64. Redash
65. Terratest
66. Tuple
67. Why Did You Render

Assess
68. Buildah and Podman
69. GitHub Actions
70. Graal Native Image
71. HashiCorp Boundary
72. imgcook
73. Longhorn
74. Operator Framework
75. Recommender
76. Remote - WSL
77. Spectral
78. Yelp detect-secrets
79. Zally

Hold
80. AWS CodePipeline

Sentry
Adopt

Sentry has become the default choice
for many of our teams when it comes
to front-end error reporting. The
convenience of features like the grouping
of errors or defining patterns for
discarding errors with certain parameters
helps deal with the flood of errors coming
from many end user devices. Integrating
Sentry in your CD pipeline allows you to
upload source maps for more efficient
error debugging, and it helps easily
trace back which errors occurred in
which version of the software. We also
appreciate that while Sentry is primarily a
SaaS offering, its source code is publicly
available and it can be used for free for
smaller use cases and self-hosting.

axe-core
Trial

Making the web inclusive requires
serious attention to ensure accessibility
is considered and validated at all stages
of software delivery. Many of the popular
accessibility testing tools are designed for
testing after a web application is complete;
as a result, issues are detected late and
often are harder to fix, accumulating
as debt. In our recent internal work on
Thoughtworks websites, we included the
open-source accessibility (a11y) testing
engine axe-core as part of our build
processes. It provided team members
with early feedback on adherence to
accessibility rules, even during early
increments. Not every issue can be found
through automated inspection, though.

Extending the functionality of axe-core is
the commercially available axe DevTools,
including functionality that guides team
members through exploratory testing for a
majority of accessibility issues.

dbt
Trial

Since we last wrote about dbt, we’ve used
it in a few projects and like what we’ve
seen. For example, we like that dbt makes
the transformation part of ELT pipelines
more accessible to consumers of the data
as opposed to just the data engineers

building the pipelines. It does this while
encouraging good engineering practices
such as versioning, automated testing
and deployment. SQL continues to be the
lingua franca of the data world (including
databases, warehouses, query engines, data
lakes and analytical platforms) and most of
these systems support it to some extent.
This allows dbt to be used against these
systems for transformations by just building
adaptors. The number of native connectors
has grown to include Snowflake, BigQuery,
Redshift and Postgres, as has the range of
community plugins. We see tools like dbt
helping data platforms become more “self
service” capable.

Hold HoldAssess AssessTrial TrialAdopt Adopt

59

17

18

23

31

39

40

41

42

43

44

45

46

47

49

51

50

16

7 8

9

10
19

27

28

29

30

20

22

24

32

33

25 26

21

11

12 13

14

15
16

5

53

55

56

57

68
69 70 71

80

72
73

74

75

76

77

78

79

60

62
63

64

66

67

81

83

86

88 91

94

84

95

96 97

98
99

100

101

102

103

10434

35

36

37

82

85

87

89

90

92

93

2

3
4

38

48

52 65

61

58

54

https://sentry.io/
https://develop.sentry.dev/self-hosted/
https://github.com/dequelabs/axe-core
https://www.deque.com/axe/devtools/
https://www.getdbt.com/
https://thoughtworks.com/radar/platforms/snowflake
https://thoughtworks.com/radar/platforms/bigquery
https://docs.getdbt.com/docs/available-adapters

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 22

run in a build pipeline, Great Expectations
makes assertions during execution of a
data pipeline. We like its simplicity and
ease of use — the rules stored in JSON
can be modified by our data domain
experts without necessarily needing data
engineering skills.

k6
Trial

We’ve had a bit more experience
performance testing with k6 since we first
covered it in the Radar, and with good
results. Our teams have enjoyed the focus
on the developer experience and flexibility
of the tool. Although it’s easy to get started
with k6 all on its own, it really shines with
its ease of integration into a developer
ecosystem. For example, using the Datadog
adapter, one team was quickly able to
visualize performance in a distributed
system and identify significant concerns
before releasing the system to production.
Another team, with the commercial version
of k6, was able to use the Azure pipelines
marketplace extension to wire performance
tests into their CD pipeline and get Azure
DevOps reporting with little effort. Since
k6 supports thresholds that allow for
automated testing assertions out of the
box, it’s relatively easy to add a stage to
your pipeline that detects performance
degradation of new changes, adding a
powerful feedback mechanism
for developers.

MLflow
Trial

MLflow is an open-source tool for machine-
learning experiment tracking and lifecycle
management. The workflow to develop and

continuously evolve a machine-learning
model includes a series of experiments (a
collection of runs), tracking the performance
of these experiments (a collection of
metrics) and tracking and tweaking models
(projects). MLflow facilitates this workflow
nicely by supporting existing open standards
and integrates well with many other tools
in the ecosystem. MLflow as a managed
service by Databricks on the cloud, available
in AWS and Azure, is rapidly maturing, and
we’ve used it successfully in our projects.
We find MLflow a great tool for model
management and tracking, supporting both
UI-based and API-based interaction models.
Our only growing concern is that MLflow is
attempting to deliver too many conflating
concerns as a single platform, such as
model serving and scoring.

OR-Tools
Trial

OR-Tools is an open-source software suite
for solving combinatorial optimization
problems. These optimization problems
have a very large set of possible solutions,
and tools like OR-Tools are quite helpful in
seeking the best solution. You can model
the problem in any one of the supported
languages — Python, Java, C# or C++ — and
choose the solvers from several supported
open-source or commercial solvers. We’ve
successfully used OR-Tools in multiple
optimization projects with integer and
mixed-integer programming.

Playwright
Trial

Playwright allows you to write Web UI
tests for Chromium and Firefox as well as
WebKit, all through the same API. The tool

esbuild
Trial

We’ve always been keen to find tools that
can shorten the software development
feedback cycle; esbuild is such an example.
As the front-end codebase grows larger, we
usually face a packaging time of minutes.
As a JavaScript bundler optimized for
speed, esbuild can reduce this time by a
factor of 10 to 100. It is written in Golang
and uses a more efficient approach in the
process of parsing, printing and source map
generation which significantly surpasses
build tools such as Webpack and Parcel
in building time. esbuild may not be as
comprehensive as those tools in JavaScript
syntax transformation; however, this doesn’t
stop many of our teams from switching to
esbuild as their default.

Flipper
Trial

Flipper is an extensible mobile application
debugger. Out of the box it supports
profiling, interactive layout inspection, log
viewer and a network inspector for iOS,
Android and React Native applications.
Compared to other debugging tools
for mobile apps, we find Flipper to be
lightweight, feature rich and easy to set up.

Great Expectations
Trial

We wrote about Great Expectations in
the previous edition of the Radar. We
continue to like it and have moved it to
Trial in this edition. Great Expectations is a
framework that enables you to craft built-
in controls that flag anomalies or quality
issues in data pipelines. Just as unit tests

Tools

OR-Tools is an open-
source software suite for
solving combinatorial
optimization problems.
These optimization
problems have a very
large set of possible
solutions, and tools like
this are quite helpful in
seeking the best solution.

(OR-Tools)

https://k6.io/
https://k6.io/docs/results-visualization/datadog
https://k6.io/docs/results-visualization/datadog
https://marketplace.visualstudio.com/items?itemName=k6.k6-load-test&ssr=false
https://marketplace.visualstudio.com/items?itemName=k6.k6-load-test&ssr=false
https://mlflow.org/
https://thoughtworks.com/radar/tools/experiment-tracking-tools-for-machine-learning
https://thoughtworks.com/radar/tools/experiment-tracking-tools-for-machine-learning
https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure
https://developers.google.com/optimization
https://playwright.dev/
https://github.com/evanw/esbuild
https://thoughtworks.com/radar/tools/webpack
https://thoughtworks.com/radar/tools/parcel
https://github.com/facebook/flipper
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://docs.greatexpectations.io/en/latest/

© Thoughtworks, Inc. All Rights Reserved.

23 | TECHNOLOGY RADAR

has gained some attention for its support
of all the major browser engines which it
achieves by including patched versions of
Firefox and Webkit. We continue to hear
positive experience reports with Playwright,
in particular its stability. Teams have also
found it easy to migrate from Puppeteer,
which has a very similar API.

Prowler
Trial

We welcome the increased availability
and maturity of infrastructure
configuration scanning tools: Prowler
helps teams scan their AWS infrastructure
setups and improve security based on
the results. Although Prowler has been
around for a while, it has evolved a lot
over the past few years, and we’ve found
it very valuable to enable teams to take
responsibility for proper security with a
short feedback loop. Prowler categorizes
AWS CIS benchmarking checks into
different groups (Identity and Access
Management, Logging, Monitoring,
Networking, CIS Level 1, CIS Level 2, EKS-
CIS), and it includes many checks that
help you gain insights into your PCI DSS
and GDPR compliance.

Pyright
Trial

While duck typing is certainly seen as a
feature by many Python programmers,
sometimes — especially for larger
codebases — type checking can be
useful, too. For that reason a number
of type annotations are proposed as
Python Enhancement Proposals (PEPs),
and Pyright is a type checker that works
with these annotations. In addition, it

provides some type inference and guards
that understand conditional code flow
constructs. Designed with large codebases
in mind, Pyright is fast, and its watch mode
checks happen incrementally as files are
changed to further shorten the feedback
cycle. Pyright can be used directly on the
command line, but integrations for VS
Code, Emacs, vim, Sublime, and possibly
other editors are available, too. In our
experience, Pyright is preferable to
alternatives like mypy.

Redash
Trial

Adopting a “you build it, you run it” DevOps
philosophy means teams have increased
attention on both technical and business
metrics that can be extracted from the
systems they deploy. Often we find that
analytics tooling is difficult to access for
most developers, so the work to capture
and present metrics is left to other teams
— long after features are shipped to end
users. Our teams have found Redash to be
very useful for querying product metrics
and creating dashboards in a way that
can be self-served by general developers,
shortening feedback cycles and focusing
the whole team on the business outcomes.

Terratest
Trial

Terratest caught our attention in the past
as an interesting option for infrastructure
testing. Since then, our teams have been
using it, and they’re very excited about it
because of its stability and the experience it
provides. Terratest is a Golang library that
makes it easier to write automated tests for
infrastructure code. Using infrastructure-

as-code tools such as Terraform, you can
create real infrastructure components (such
as servers, firewalls, or load balancers)
to deploy applications on them and then
validate the expected behavior using
Terratest. At the end of the test, Terratest
can undeploy the apps and clean up
resources. This makes it largely useful for
end-to-end tests of your infrastructure in a
real environment.

Tuple
Trial

Tuple is a relatively new tool optimized for
remote paired programming, designed to fill
the gap Slack left in the marketplace after
abandoning Screenhero. Although it still
exhibits some growing pains — platform
availability is limited to Mac OS for now
(with Linux support coming soon), and it
has some UI quirks to work through —
we’ve had good experience using it within
those constraints. Unlike general-purpose
video- and screen-sharing tools like Zoom,
Tuple supports dual control with two
mouse cursors, and unlike options such as
Visual Studio Live Share, it isn’t tied to an
IDE. Tuple supports voice and video calls,
clipboard sharing, and lower latency than
general-purpose tools; and its ability to let
you draw and erase in your pair’s screen
with ease makes Tuple a very intuitive and
developer-friendly tool.

Why Did You Render
Trial

When working with React, we often
encounter situations where our page is very
slow because some components are re-
rendering when they shouldn’t be. Why Did
You Render is a library that helps detect why

Tools

Tuple is a relatively new
remote pair programming
tool, designed to fill
the gap Slack left in
the marketplace after
abandoning Screenhero.

(Tuple)

https://thoughtworks.com/radar/languages-and-frameworks/puppeteer
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://github.com/toniblyx/prowler
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://en.wikipedia.org/wiki/Duck_typing
https://github.com/Microsoft/pyright
https://redash.io/
https://github.com/gruntwork-io/terratest
https://thoughtworks.com/radar/tools/terraform
https://tuple.app/
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://github.com/welldone-software/why-did-you-render
https://github.com/welldone-software/why-did-you-render

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 24

a component is re-rendering. It does this by
monkey patching React. We’ve used it in a
few of our projects to debug performance
issues with great effect.

Buildah and Podman
Assess

Even though Docker has become the
sensible default for containerization,
we’re seeing new players in this space
that are catching our attention. That is the
case for Buildah and Podman, which are
complementary projects to build images
(Buildah) and run containers (Podman)
using a rootless approach in multiple
Linux distributions. Podman introduces
a daemonless engine for managing and
running containers which is an interesting
approach in comparison to what Docker
does. The fact that Podman can use either
Open Container Initiative (OCI) images built
by Buildah or Docker images makes this tool
even more attractive and easy to use.

GitHub Actions
Assess

CI servers and build tools are some of the
oldest and most widely used in our kit.
They run the gamut from simple cloud-
hosted services to complex, code-defined
pipeline servers that support fleets of
build machines. Given our experience
and the wide range of options already
available, we were initially skeptical
when GitHub Actions were introduced
as another mechanism to manage the
build and integration workflow. But the
opportunity for developers to start small
and easily customize behavior means
that GitHub Actions are moving toward
the default category for smaller projects.
It’s hard to argue with the convenience of

having the build tool integrated directly
into the source code repository. An
enthusiastic community has emerged
around this feature and that means a
wide range of user-contributed tools and
workflows are available to get started.
Tools vendors are also getting on board
via the GitHub Marketplace. However,
we still recommend you proceed with
caution. Although code and Git history
can be exported into alternative hosts,
a development workflow based on
GitHub Actions can’t. Also, use your best
judgment to determine when a project is
large or complex enough to warrant an
independently supported pipeline tool.
But for getting up and running quickly on
smaller projects, it’s worth considering
GitHub Actions and the ecosystem that is
growing around them.

Graal Native Image
Assess

Graal Native Image is a technology that
compiles Java code into an operating
system’s native binary — in the form of
a statically linked executable or a shared
library. A native image is optimized to
reduce the memory footprint and startup
time of an application. Our teams have
successfully used Graal native images,
executed as small Docker containers, in the
serverless architecture where reducing start
time matters. Although designed for use
with programming languages such as Go
or Rust that natively compile and require
smaller binary sizes and shorter start times,
Graal Native Image can be equally useful to
teams that have other requirements and
want to use JVM-based languages.

Graal Native Image Builder, native-image,
supports JVM-based languages — such as
Java, Scala, Clojure and Kotlin — and builds

executables on multiple operating systems
including Mac OS, Windows and multiple
distributions of Linux. Since it requires
a closed-world assumption, where all
code is known at compile time, additional
configuration is needed for features such
as reflection or dynamic class loading where
types can’t be deduced at build time from
the code alone.

HashiCorp Boundary
Assess

HashiCorp Boundary combines the secure
networking and identity management
capabilities needed for brokering access
to your hosts and services in one place
and across a mix of cloud and on-premise
resources if needed. Key management
can be done by integrating the key
management service of your choice, be
it from a cloud vendor or something like
HashiCorp Vault. HashiCorp Boundary
supports a growing number of identity
providers and can be integrated with parts
of your service landscape to help define
permissions, not just on host but also on a
service level. For example, it enables you to
control fine-grained access to a Kubernetes
cluster, and dynamically pulling in service
catalogs from various sources is on the
roadmap. All of this stays out of the way
of the engineering end users who get the
shell experience they’re used to, securely
connected through Boundary’s network
management layer.

imgcook
Assess

Remember the research project pix2code
that showed how to automatically generate
code from GUI screenshots? Now there is
a productized version of this technique —

Tools

imgcook is a SaaS product
from Alibaba, which can
intelligently transform
various design files—
Sketch, PSD, even
static images—into
front-end code.

(imgcook)

https://thoughtworks.com/radar/platforms/docker
https://github.com/containers/buildah
https://github.com/containers/podman
https://thoughtworks.com/radar/platforms/rootless-containers
https://opencontainers.org/
https://docs.github.com/en/actions
https://github.com/marketplace?type=actions
https://thoughtworks.com/radar/tools/git
https://www.graalvm.org/reference-manual/native-image/
https://www.thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/languages-and-frameworks/go-language
https://thoughtworks.com/radar/languages-and-frameworks/rust
https://www.boundaryproject.io/
https://thoughtworks.com/radar/tools/hashicorp-vault
https://github.com/tonybeltramelli/pix2code

© Thoughtworks, Inc. All Rights Reserved.

25 | TECHNOLOGY RADAR

imgcook is a SaaS product from Alibaba that
can intelligently transform various design
files (Sketch/PSD/static images) into front-
end code. Alibaba needs to customize a
large number of campaign pages during
the Double Eleven shopping festival. These
are usually one-time pages that need to
be developed quickly. Through the deep-
learning method, the UX’s design is initially
processed into front-end code and then
adjusted by the developer. Our team is
evaluating this tech: although the image
processing takes place on the server side
while the main interface is on the web,
imgcook provides tools that could integrate
with the software design and development
lifecycle. imgcook can generate static code
as well as some data-binding component
code if you define a DSL. The technology
is not perfect yet; designers need to
refer to certain specifications to improve
the accuracy of code generation (which
still needs to be adjusted by developers
afterward). We’ve always been cautious
about magic code generation, because
the generated code is usually difficult to
maintain in the long run, and imgcook is
no exception. But if you limit the usage to a
specific context, such as one-time campaign
pages, it’s worth a try.

Longhorn
Assess

Longhorn is a distributed block storage
system for Kubernetes. There are many
persistent storage options for Kubernetes;
unlike most, however, Longhorn is built
from the ground up to provide incremental
snapshots and backups, thereby easing
the pain of running a replicated storage
for non–cloud-hosted Kubernetes. With
the recent experimental support for

ReadWriteMany (RWX) you can even mount
the same volume for read and write access
across many nodes. Choosing the right
storage system for Kubernetes is a nontrivial
task, and we recommend you assess
Longhorn based on your needs.

Operator Framework
Assess

Operator Framework is a set of open-source
tools that simplifies building and managing
the lifecycle of Kubernetes operators. The
Kubernetes operator pattern, originally
introduced by CoreOS, is an approach to
encapsulate the knowledge of operating
an application using Kubernetes native
capabilities; it includes resources to be
managed and controller code that ensures
the resources are matching their target state.
This approach has been used to extend
Kubernetes to manage many applications,
particularly the stateful ones, natively.
Operator Framework has three components:
Operator SDK, which simplifies building,
testing and packaging Kubernetes operators;
Operator lifecycle manager to install, manage
and upgrade the operators; and a catalog to
publish and share third-party operators. Our
teams have found Operator SDK particularly
powerful in rapidly developing Kubernetes-
native applications.

Recommender
Assess

The number of services offered by the big
cloud providers keeps growing, but so does
the convenience and maturity of tools that
help you use them securely and efficiently.
Recommender is a service on Google Cloud
that analyzes your resources and gives you

recommendations on how to optimize them
based on your actual usage. The service
consists of a range of “recommenders”
in areas such as security, compute usage
or cost savings. For example, the IAM
Recommender helps you better implement
the principle of least privilege by pointing
out permissions that are never actually used
and therefore are potentially too broad.

Remote - WSL
Assess

Over the past few years Windows
Subsystem for Linux (WSL) has come up
a few times in our discussions. Although
we liked what we saw, including the
improvements in WSL 2, it never made it
into the Radar. In this edition we want to
highlight an extension for Visual Studio
Code that greatly improves the experience
working with WSL. Although Windows-
based editors could always access files
on a WSL file system, they were unaware
of the isolated Linux environment. With
the Remote - WSL extension, Visual Studio
Code becomes aware of WSL, allowing
developers to launch a Linux shell. This
also enables debugging of binaries running
inside WSL from Windows. Jetbrains’ IntelliJ
too has seen steady improvement in its
support for WSL.

Spectral
Assess

One of the patterns we’ve seen repeat
itself in this publication is that static
error- and style-checking tools emerge
quickly after a new language gains
popularity. These tools are generically
known as linters — after the classic and

Tools

Recommender is a
service on Google Cloud
that analyzes cloud
resources and provides
a recommendation for
optimization based on
actual usage.

(Recommender)

https://www.imgcook.com/
https://github.com/imgcook
https://longhorn.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://kubernetes-csi.github.io/docs/drivers.html
https://longhorn.io/blog/longhorn-v1.1.0/
https://longhorn.io/blog/longhorn-v1.1.0/
https://operatorframework.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://web.archive.org/web/20170129131616/https://coreos.com/blog/introducing-operators.html
https://operatorhub.io/
https://sdk.operatorframework.io/
https://github.com/operator-framework/operator-lifecycle-manager/
https://operatorhub.io/
https://cloud.google.com/recommender
https://cloud.google.com/iam/docs/role-recommendations
https://cloud.google.com/iam/docs/role-recommendations
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://youtrack.jetbrains.com/issue/IDEA-171510#focus=Comments-27-4155034.0-0

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 26

beloved Unix utility lint, which statically
analyzes C code. We like these tools
because they catch errors early, before
code even gets compiled. The latest
instance of this pattern is Spectral, a
linter for YAML and JSON. Although
Spectral is a generic tool for these
formats, its main target is OpenAPI (the
evolution of Swagger) and AsyncAPI.
Spectral ships with a comprehensive set
of out-of-the-box rules for these specs
that can save developers headaches
when designing and implementing APIs
or event-driven collaboration. These
rules check for proper API parameter
specifications or the existence of a
license statement in the spec, among
other things. While this tool is a welcome
addition to the API development
workflow, it does raise the question of
whether a non-executable specification
should be so complex as to require
an error-checking technique designed
for programming languages. Perhaps
developers should be writing code
instead of specs?

Yelp detect-secrets
Assess

Yelp detect-secrets is a Python module for
detecting secrets within a codebase; it scans
files within a directory looking for secrets.
It can be used as a Git pre-commit hook or
to perform a scan in multiple places within
the CI/CD pipeline. It comes with a default
configuration that makes it very easy to
use but can be modified to suit your needs.
You can also install custom plugins to add
to its default heuristic searches. Compared
to similar offerings, we found that this tool
detects more types of secrets with its out-of-
the-box configuration.

Zally
Assess

As the API specification ecosystem matures,
we’re seeing more tools built to automate
style checks. Zally is a minimalist OpenAPI
linter that helps to ensure an API conforms
to the team’s API style guide. Out of the

box, it will validate against a rule set
developed for Zalando’s API style guide,
but it also supports a Kotlin extension
mechanism to develop custom rules. Zally
includes a web UI that provides an intuitive
interface for understanding style violations
and includes a CLI that makes it easy to
plug into your CD pipeline.

AWS CodePipeline
Hold

Based on the experiences of multiple
Thoughtworks teams we suggest
approaching AWS CodePipeline with caution.
Specifically, we’ve found that once teams
move beyond simple pipelines, this tool can
become hard to work with. While it may
seem like a “quick win” when first starting
out with AWS, we suggest taking a step back
and checking whether AWS CodePipeline will
meet your longer-term needs, for example,
pipeline fan-out and fan-in or more complex
deployment and testing scenarios featuring
nontrivial dependencies and triggers.

Tools

Zally is a minimalist
OpenAPI linter that helps
ensure an API conforms to
the team’s API style guide.

(Zally)

https://stoplight.io/open-source/spectral/
https://thoughtworks.com/radar/tools/swagger
https://thoughtworks.com/radar/tools/asyncapi
https://github.com/Yelp/detect-secrets
https://thoughtworks.com/radar/tools/git
https://github.com/zalando/zally
https://opensource.zalando.com/restful-api-guidelines/
https://aws.amazon.com/codepipeline/
https://thoughtworks.com/radar/platforms/aws

Languages &
Frameworks

TECHNOLOGY RADAR

© Thoughtworks, Inc. All Rights Reserved.

28 | TECHNOLOGY RADAR

Adopt
81. Combine
82. LeakCanary

Trial
83. Angular Testing Library
84. AWS Data Wrangler
85. Blazor
86. FastAPI
87. io-ts
88. Kotlin Flow
89. LitElement
90. Next.js
91. On-demand modules
92. Streamlit
93. SWR
94. TrustKit

Assess
95. .NET 5
96. bUnit
97. Dagster
98. Flutter for Web
99. Jotai and Zustand
100. Kotlin Multiplatform Mobile
101. LVGL
102. React Hook Form
103. River
104. Webpack 5 Module Federation

Hold

Combine
Adopt

A long time ago we placed ReactiveX — a
family of open-source frameworks for
reactive programming — into the Adopt
ring of the Radar. In 2017, we mentioned
the addition of RxSwift, which brought
reactive programming to iOS development
using Swift. Since then, Apple has
introduced its own take on reactive
programming in the form of the Combine
framework. Combine has become our
default choice for apps that support iOS
13 as an acceptable deployment target. It’s
easier to learn than RxSwift and integrates
really well with SwiftUI. If you’re planning
to convert an existing application from
RxSwift to Combine or work with both in
the same project, you might want to look
at RxCombine.

LeakCanary
Adopt

Our mobile teams now view LeakCanary
as a good default choice for Android
development. It detects annoying memory
leaks in Android apps, is extremely simple
to hook up and provides notifications with
a clear trace-back to the cause of the leak.
LeakCanary can save you tedious hours
troubleshooting out-of-memory errors on
multiple devices, and we recommend you
add it to your toolkit.

Languages &
Frameworks

Hold HoldAssess AssessTrial TrialAdopt Adopt

59

17

18

23

31

39

40

41

42

43

44

45

46

47

49

51

50

16

7 8

9

10
19

27

28

29

30

20

22

24

32

33

25 26

21

11

12 13

14

15
16

5

53

55

56

57

68
69 70 71

80

72
73

74

75

76

77

78

79

60

62
63

64

66

67

81

83

86

88 91

94

84

95

96 97

98
99

100

101

102

103

10434

35

36

37

82

85

87

89

90

92

93

2

3
4

38

48

52 65

61

58

54

Angular Testing Library
Trial

As we continue developing web
applications in JavaScript, we continue
enjoying the Testing Library approach
of testing applications; and carry on
exploring and gaining experience with its
packages — beyond that of React Testing
Library. Angular Testing Library brings all
the benefits of its family when testing UI
components in a user-centric way, pushing
for more maintainable tests focused
primarily on behavior rather than testing
UI implementation details. Although it falls

short in documentation, Angular Testing
Library does provide good sample tests
that helped us in getting started faster for
various cases. We’ve had great success
with this testing library in our Angular
projects and advise you to trial this solid
testing approach.

AWS Data Wrangler
Trial

AWS Data Wrangler is an open-source
library that extends the capabilities of
Pandas to AWS by connecting data frames

https://thoughtworks.com/radar/languages-and-frameworks/reactivex
https://github.com/ReactiveX/RxSwift
https://developer.apple.com/documentation/combine
https://thoughtworks.com/radar/languages-and-frameworks/swiftui
https://github.com/CombineCommunity/RxCombine
http://github.com/square/leakcanary
https://thoughtworks.com/radar/languages-and-frameworks/testing-library
https://thoughtworks.com/radar/languages-and-frameworks/react-testing-library
https://thoughtworks.com/radar/languages-and-frameworks/react-testing-library
https://testing-library.com/docs/angular-testing-library/intro/
https://github.com/testing-library/angular-testing-library/tree/master/apps/example-app/app/examples
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://github.com/awslabs/aws-data-wrangler
https://github.com/pandas-dev/pandas

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 29

build solutions, not just for data science
but for back-end services too. In these
scenarios, we’re having good experiences
with FastAPI — a modern, fast (high-
performance), web framework for building
APIs with Python 3.6 or later. Additionally,
this framework and its ecosystem include
features such as API documentation using
OpenAPI that allow our teams to focus on
the business functionalities and quickly
create REST APIs, which makes FastAPI a
good alternative to existing solutions in
this space.

io-ts
Trial

We’ve really enjoyed using TypeScript
for a while now and love the safety that
the strong typing provides. However,
getting data into the bounds of the type
system — from, for example, a call to a
back-end service — can lead to run-time
errors. One library that helps solve this
problem is io-ts. It bridges the gap between
compile-time type-checking and run-time
consumption of external data by providing
encode and decode functions. It can also
be used as a custom type guard. As we
gain more experience with io-ts in our
work, our initially positive impressions are
confirmed, and we still like the elegance of
its approach.

Kotlin Flow
Trial

The introduction of coroutines to Kotlin
opened the door for several innovations
— Kotlin Flow is one of them, directly
integrated into the coroutines library. It’s

an implementation of Reactive Streams
on top of coroutines. Unlike RxJava,
flows are a native Kotlin API similar to
the familiar sequence API with methods
that include map and filter. Like
sequences, flows are cold, meaning that
the values of the sequence are only
constructed when needed. All of this
makes writing multithreaded code much
simpler and easier to understand than
other approaches. The toList method,
predictably, converts a flow into a list which
is a common pattern in tests.

LitElement
Trial

Steady progress has been made since we
first wrote about Web Components in 2014.
LitElement, part of the Polymer Project, is
a simple library that you can use to create
lightweight web components. It’s really
just a base class that removes the need for
a lot of the common boilerplate, making
writing web components a lot easier.
We’ve had success using it on projects, and
as we see the technology maturing and
the library being well liked, LitElement is
becoming more commonly used in our Web
Components-based projects.

Next.js
Trial

We’ve had a bit more experience using
Next.js for React codebases since the
last time we wrote about it. Next.js is an
opinionated, zero-configuration framework
that includes simplified routing, automatic
compilation and bundling with Webpack and
Babel, fast hot reloading for a convenient

to AWS data-related services. In addition
to Pandas, this library leverages Apache
Arrow and Boto3 to expose several APIs
to load, transform and save data from
data lakes and data warehouses. An
important limitation is that you can’t do
large distributed data pipelines with this
library. However, you can leverage the
native data services — like Athena, Redshift
and Timestream — to do the heavy lifting
and pull data in order to express complex
transformations that are well suited
for data frames. We’ve used AWS Data
Wrangler in production and like that it
lets you focus on writing transformations
without spending too much time on the
connectivity to AWS data services.

Blazor
Trial

Although JavaScript and its ecosystem
is dominant in the web UI development
space, new opportunities are opening
up with the emergence of WebAssembly.
Blazor continues to demand our attention;
it’s producing good results with our teams
building interactive rich user interfaces
using C# on top of WebAssembly. The fact
that our teams can use C# on the frontend
too allows them to share code and reuse
existing libraries. That, along with the
existing tooling for debugging and testing,
such as bUnit, make this open-source
framework worth trying.

FastAPI
Trial

We’re seeing more teams adopting
Python as the preferred language to

Languages &
Frameworks

FastAPI is a modern,
high-performance web
framework for building
APIs with Python 3.6
and later.

(FastAPI)

https://fastapi.tiangolo.com/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://gcanti.github.io/io-ts/
https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/flow.html
https://github.com/ReactiveX/RxJava
https://thoughtworks.com/radar/platforms/web-components-standard
https://lit-element.polymer-project.org/
https://www.polymer-project.org/
https://nextjs.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/tools/webpack
https://thoughtworks.com/radar/tools/babel
https://github.com/apache/arrow
https://github.com/apache/arrow
https://github.com/boto/boto3
https://aws-data-wrangler.readthedocs.io/en/2.5.0/api.html
https://thoughtworks.com/radar/languages-and-frameworks/webassembly
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://thoughtworks.com/radar/languages-and-frameworks/bunit

© Thoughtworks, Inc. All Rights Reserved.

30 | TECHNOLOGY RADAR

developer workflow among other features.
It provides server-side rendering by default,
improves search engine optimization
and the initial load time and supports
incremental static generation. We’ve had
positive experience reports from teams
using Next.js and, given its large community,
continue to be excited about the evolution
of the framework.

On-demand modules
Trial

On-demand modules for Android is a
framework that allows tailored APKs
containing only required functionality to
be downloaded and installed for a suitably
structured app. This could be worth trialing
for larger apps where download speed
might be an issue, or if a user is likely only to
use some functionality on initial installation.
It can also simplify the handling of multiple
devices without requiring different APKs. A
similar framework is available for iOS.

Streamlit
Trial

Streamlit is an open-source application
framework in Python used by data scientists
for building interactive data applications.
Tuning machine-learning models takes
time; instead of going back and forth on the
main application (the one that uses these
models), we’ve found value in quickly building
standalone prototypes in Streamlit and
gathering feedback during experimentation
cycles. Streamlit stands out from competitors
such as Dash because of its focus on rapid
prototyping and support for a wide range of
visualization libraries, including Plotly and

Bokeh. We’re using it in a few projects and
like how we can put together interactive
visualizations with very little effort.

SWR
Trial

When used in appropriate circumstances,
our teams have found that the React
Hooks library SWR can result in cleaner
code and much improved performance.
SWR implements the stale-while-revalidate
HTTP caching strategy, first returning data
from cache (stale), then sending the fetch
request (revalidate) and finally refreshing
the values with the up-to-date response. We
caution teams to only use the SWR caching
strategy when an application is supposed to
return stale data. Note that HTTP requires
that caches respond to a request with the
most up-to-date response; only in carefully
considered circumstances is a stale response
allowed to be returned.

TrustKit
Trial

SSL public key pinning is tricky. If you
select the wrong policy or don’t have a
backup pin, your application will stop
working unexpectedly. This is where
TrustKit is useful — it’s an open-source
framework that makes SSL public key
pinning easier for iOS applications. There
is an equivalent framework for Android as
well. Picking the correct pinning strategy
is a nuanced topic, and you can find more
details about it in the TrustKit Getting
Started guide. We’ve used TrustKit in
several projects in production, and it has
worked out well.

.NET 5
Assess

We don’t call out every new .NET version
in the Radar, but .NET 5 represents
a significant step forward in bringing
.NET Core and .NET Framework into a
single platform. Organizations should
start to develop a strategy to migrate
their development environments — a
fragmented mix of frameworks depending
on the deployment target — to a single
version of .NET 5 or 6 when it becomes
available. The advantage of this approach
will be a common development platform
regardless of the intended environment:
Windows, Linux, cross-platform mobile
devices (via Xamarin) or the browser
(using Blazor). While polyglot development
will remain the preferred approach for
companies with the engineering culture to
support it, others will find it more efficient
to standardize on a single platform for
.NET development. For now, we want to
keep this in the Assess ring to see how
well the final unified framework performs
in .NET 6.

bUnit
Assess

bUnit is a testing library for Blazor that
makes it easy to create tests for Blazor
components in existing unit testing
frameworks such as NUnit, xUnit or MSUnit.
It provides a facade around the component
allowing it to be run and tested within the
familiar unit test paradigm, thus allowing
very fast feedback and testing of the
component in isolation. If you’re developing
for Blazor, we recommend that you add
bUnit to your list of tools to try out.

Languages &
Frameworks

Streamlit is an open-
source application
framework in Python
used by data scientists for
building interactive data
visualizations.

(Streamlit)

https://developer.android.com/codelabs/on-demand-dynamic-delivery#0
https://developer.apple.com/app-clips/
https://www.streamlit.io/
https://thoughtworks.com/radar/tools/dash
https://plotly.com/
https://thoughtworks.com/radar/tools/bokeh
https://thoughtworks.com/radar/languages-and-frameworks/react-hooks
https://thoughtworks.com/radar/languages-and-frameworks/react-hooks
https://github.com/vercel/swr
https://tools.ietf.org/html/rfc5861
https://tools.ietf.org/html/rfc2616
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://github.com/datatheorem/TrustKit
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit/blob/master/docs/getting-started.md
https://github.com/datatheorem/TrustKit/blob/master/docs/getting-started.md
https://thoughtworks.com/radar/tools/xamarin
https://thoughtworks.com/radar/languages-and-frameworks/blazor
https://bunit.egilhansen.com/
https://thoughtworks.com/radar/languages-and-frameworks/blazor

© Thoughtworks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 31

Dagster
Assess

Dagster is an open-source data
orchestration framework for machine
learning, analytics and plain ETL data
pipelines. Unlike other task-driven
frameworks, Dagster is aware of data
flowing through the pipeline and can
provide type-safety. With this unified view of
pipelines and assets produced, Dagster can
schedule and orchestrate Pandas, Spark,
SQL or anything else that Python can invoke.
The framework is relatively new, and we
recommend that you assess its capabilities
for your data pipelines.

Flutter for Web
Assess

So far, Flutter has primarily supported native
iOS and Android applications. However, the
Flutter team’s vision is to support building
applications on every platform. Flutter for
Web is one step in that direction — it allows
us to build apps for iOS, Android and the
browser from the same codebase. It has
been available for over a year now on the
“Beta” channel, but with the recent Flutter
2.0 release, Flutter for Web has hit the
stable milestone. In the initial release of
web support, the Flutter team is focusing on
progressive web apps, single-page apps and
expanding existing mobile apps to the web.
The application and framework code (all
in Dart) are compiled to JavaScript instead
of ARM machine code, which is used for
mobile applications. Flutter’s web engine
offers a choice of two renderers: an HTML
renderer, which uses HTML, CSS, Canvas
and SVG, and a CanvasKit renderer that uses

WebAssembly and WebGL to render Skia
paint commands to the browser canvas. A
few of our teams have started using Flutter
for Web and like the initial results.

Jotai and Zustand
Assess

In the previous Radar, we commented on
the beginning of a phase of experimentation
with state management in React applications.
We moved Redux back into the Trial ring,
documenting that it is no longer our default
choice, and we mentioned Facebook’s Recoil.
In this volume we want to highlight Jotai
and Zustand: Both are state management
libraries for React; both aim to be small and
simple to use; and, perhaps not by complete
coincidence, both names are translations of
the word state into Japanese and German,
respectively. Beyond these similarities,
however, they differ in their design. Jotai’s
design is closer to that of Recoil in that state
consists of atoms stored within the React
component tree, whereas Zustand stores the
state outside of React in a single state object,
much like the approach taken by Redux. The
authors of Jotai provide a helpful checklist to
decide when to use which.

Kotlin Multiplatform Mobile
Assess

Following the trend of cross-platform mobile
development, Kotlin Multiplatform Mobile
(KMM) is a new entry in this space. KMM is
an SDK provided by JetBrains that leverages
the multiplatform capabilities in Kotlin and
includes tools and features designed to
make the end-to-end experience of building

Languages &
Frameworks

These state management
libraries for React aim to
be small and simple to use.
Perhaps not by complete
coincidence, both names
are translations of the
word state into Japanese
and German, respectively.

(Jotai and Zustand)

mobile cross-platform applications more
enjoyable and efficient. With KMM you
write code once for business logic and the
app core in Kotlin and then share it with
both Android and iOS applications. Write
platform-specific code only when necessary,
for example, to take advantage of native UI
elements; and the specific code is kept in
different views for each platform. Although
still in Alpha, Kotlin Multiplatform Mobile is
evolving rapidly. We’ll certainly keep an eye
on it, and you should too.

LVGL
Assess

With the increasing popularity of smart
home and wearable devices, demand for
intuitive graphical user interfaces (GUIs)
is increasing. However, if you’re engaged
in embedded device development, rather
than Android/iOS, GUI development may
take a lot of effort. As an open-source
embedded graphics library, LVGL has
become increasingly popular. LVGL has
been adapted to mainstream embedded
platforms such as NXP, STM32, PIC, Arduino,
and ESP32. It has a very small memory
footprint: 64 kB flash and 8 kB RAM is
enough to make it work, and it can run
smoothly on various Cortex-M0 low-power
MCUs. LVGL supports input types such
as touchscreen, mouse and buttons and
contains more than 30 controls, including
TileView suitable for smart watches. The MIT
license it chose doesn’t restrict enterprise
and commercial use. Our teams’ feedback
on this tool has been positive and one
of our projects using LVGL is already in
production, more specifically in small batch
manufacturing.

https://github.com/dagster-io/dagster
https://thoughtworks.com/radar/platforms/apache-spark
https://thoughtworks.com/radar/languages-and-frameworks/flutter
https://web.dev/what-are-pwas/
https://en.wikipedia.org/wiki/Single-page_application
https://thoughtworks.com/radar/languages-and-frameworks/google-dart
https://thoughtworks.com/radar/languages-and-frameworks/webassembly
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://thoughtworks.com/radar/languages-and-frameworks/recoil
https://github.com/pmndrs/jotai
https://github.com/pmndrs/zustand
https://github.com/pmndrs/jotai/blob/master/docs/introduction/comparison.md
https://kotlinlang.org/docs/mobile/home.html
https://kotlinlang.org/docs/multiplatform.html
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://kotlinlang.org/docs/mobile/kmm-evolution.html
https://github.com/lvgl/lvgl

© Thoughtworks, Inc. All Rights Reserved.

32 | TECHNOLOGY RADAR

React Hook Form
Assess

Building forms for the web remains one
of the perennial challenges of front-end
development, in particular with React. Many
of our teams working with React have been
using Formik to make this easier, but some
are now assessing React Hook Form as a
potential alternative. React Hooks already
existed when React Hook Form was created,
so it could use them as a first-class concept:
the framework is registering and tracking
form elements as uncontrolled components
via a hook, thereby significantly reducing
the need for re-rendering. It’s also quite
lightweight in size and in the amount of
boilerplate code needed.

River
Assess

At the heart of many approaches to
machine learning lies the creation of a
model from a set of training data. Once
a model is created, it can be used over
and over again. However, the world isn’t
stationary, and often the model needs to
change as new data becomes available.
Simply re-running the model creation
step can be slow and costly. Incremental
learning addresses this issue, making it
possible to learn from streams of data
incrementally to react to change faster.
As a bonus the compute and memory
requirements are lower and predictable.
In our implementations we’ve had good
experience with the River framework, but
so far we’ve added checks, sometimes
manual, after updates to the model.

Webpack 5 Module Federation
Assess

The release of the Webpack 5 Module
Federation feature has been highly
anticipated by developers of micro frontend
architectures. The feature introduces a
more standardized way to optimize how
module dependencies and shared code are
managed and loaded. Module federation
allows for the specification of shared
modules, which helps with the deduplication
of dependencies across micro frontends by
loading code used by multiple modules only
once. It also lets you distinguish between
local and remote modules, where the
remote modules are not actually part of
the build itself but loaded asynchronously.
Compared to build-time dependencies like
npm packages, this can significantly simplify
the deployment of a module update with
many downstream dependencies. Be aware,
though, that this requires you to bundle
all of your micro frontends with Webpack,
as opposed to approaches such as import
maps, which might eventually become part
of the W3C standard.

Languages &
Frameworks

Machine-learning models
often need to change
as new data becomes
available. Incremental
learning makes it possible
to learn from streams of
data incrementally to react
to change faster. In our
implementations we’ve had
good experience with River,
a Python library for online
machine learning.

(River)

https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/formik
https://react-hook-form.com/
https://thoughtworks.com/radar/languages-and-frameworks/react-hooks
https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82
https://riverml.xyz/dev/
https://webpack.js.org/concepts/module-federation/
https://webpack.js.org/concepts/module-federation/
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/techniques/import-maps-for-micro-frontends
https://thoughtworks.com/radar/techniques/import-maps-for-micro-frontends

We are a software consultancy and
community of passionate purpose-led
individuals, 9,000+ people strong across
48 offices in 17 countries. Over our 27+
year history, we have helped our clients
solve complex business problems
where technology is the differentiator.
When the only constant is change, we
prepare you for the unpredictable.

Want to stay up to date with all
Radar-related news and insights?
Follow us on your favorite social channel or

become a subscriber.

subscribe now

https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/3lQZVyh
https://thght.works/3riAVkA

thoughtworks.com/radar
#TWTechRadar

https://thght.works/3w1qwNF
https://thght.works/3w1qwNF
https://thght.works/3riAVkA

